Ingenstans tät mängd
Den här artikeln behöver källhänvisningar för att kunna verifieras. (2024-03) Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan. |
En ingenstans tät mängd är inom topologi en delmängd A till ett topologiskt rum X med egenskapen att det inre till slutna höljet av A är tomt.
Om en delmängd är ingenstans tät eller inte beror inte bara på delmängden utan även på rummet som delmängden ligger i; en delmängd kan vara ingenstans tät i ett rum men inte i ett annat.
Exempel
Exempel på ingenstans täta delmängder:
- Heltalen i de reella talen.
- Cantormängden på intervallet .
Exempel på mängder som inte är ingenstans täta:
- De rationella talen i de reella talen, som tvärtom är en tät mängd.
Egenskaper
Varje delmängd till en ingenstans tät mängd är ingenstans tät, likaså är varje ändlig union av ingenstans täta delmängder ingenstans tät.
En uppräknelig union av ingenstans täta delmängder behöver dock inte vara ingenstans tät, sådana mängder kallas mängder av första kategorin.
Se även
Media som används på denna webbplats
Författare/Upphovsman: Tkgd2007, Licens: CC BY-SA 3.0
A new incarnation of Image:Question_book-3.svg, which was uploaded by user AzaToth. This file is available on the English version of Wikipedia under the filename en:Image:Question book-new.svg