Perseverance
Status | Aktiv |
---|---|
Typ | Rover |
Organisation | NASA |
Större entreprenör | JPL |
NSSDC-ID | 2020-052A[1] |
Webbplats | Rover |
Uppskjutning | |
Uppskjutningsplats | Cape Canaveral LC-41 |
Uppskjutning | 30 juli 2020, 11:50 UTC |
Uppskjutningsfarkost | Atlas V 541 |
Landning | |
Landning | Jezero krater |
Tidpunkt för landning | 18 februari 2021, 20:56 UTC |
Egenskaper | |
Massa | 1 025 kg |
Dimensioner | 3 x 2.7 x 2.2 m |
Effekt | Radioisotopgenerator 110 W[2] |
Perseverance är en obemannad motoriserad landfarkost (rover/strövare), utvecklad av Jet Propulsion Laboratory, under NASAs Mars 2020-projekt. Den sköts upp av en Atlas V-raket 30 juli 2020. Planen är att rovern ska utforska Jezero-kratern på Mars. Den landade som planerat i Jezero-kratern den 18 februari 2021.
Rovern är en vidareutveckling av rovern Curiosity som landade på Mars i augusti 2012. Den förväntas arbeta i minst ett marsår (cirka två jordår).
Marshelikoptern Ingenuity åkte snålskjuts med Perseverance till Mars.
Namn
Den 28 augusti 2019 startade NASA en tävling för att namnge strövaren och i mars 2020 meddelade man att strövaren döpts till Perseverance.[3]
Teknisk specifikation
Perseverance väger omkring 1 025 kg.
Perseverance drivs av en radioisotopgenerator (RIG) som beräknas leverera en uteffekt på 110 W.[2]
Vetenskapliga instrument
- Planetary Instrument for X-Ray Lithochemistry (PIXL), en röntgenfluorescensspektrometer för att bestämma den exakta fördelningen av grundämnen i Mars ytmaterial.[4]
- Radar Imager for Mars subsurface experiment (RIMFAX), en markpenetrerande radar för kartläggning ner till minst 10 meter under roboten. RIMFAX levereras av norska Forsvarets forskningsinstitutt.[4]
- Mars Environmental Dynamic Analyzer (MEDA), en uppsättning sensorer som mäter temperatur, vindens hastighet och riktning, tryck, relativ fuktighet samt dammpartiklars storlek och form. Den tillhandahålls av Spaniens Centro de Astrobiología.[4]
- Mars Oxygen ISRU experiment (MOXIE), ett experiment som kommer att producera små mängder syrgas (O2) från atmosfärisk koldioxid (CO2). Denna teknik kan skalas upp i framtiden för mänskligt livsstöd eller producera raketbränsle för resor åter till jorden.[4]
- SuperCam, ett instrument som, på avstånd, kan ge en bild, kemisk sammansättning analys och mineralogi i stenar och regolit. Det liknar ChemCam på Curiosity men med fyra vetenskapliga instrument som gör det möjligt att leta efter biosignaturer.[4]
- Mastcam-Z , ett stereoskopiskt kamerasystem med möjlighet att zooma.[4]
- Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC), en ultraviolett ramanspektrometer som använder högupplöst bildbehandling och en ultraviolett (UV) laser för att bestämma finkornig mineralogi och detektera organiska föreningar.[4]
- Mikrofoner som kommer att användas under landningsögonblicket under körning och vid samling av prov.[5]
Totalt finns det 23 olika kameror ombord på farkosten.[6]
Källor
Fotnoter
- ^ ”NASA Space Science Data Coordinated Archive” (på engelska). NASA. https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2020-052A. Läst 18 augusti 2020.
- ^ [a b] NASA. ”Electrical Power” (på engelska). NASA. https://mars.nasa.gov/mars2020/spacecraft/rover/electrical-power/. Läst 16 juli 2020.
- ^ NASA (mars 2020). ”The Mars 2020 Rover Has a Name” (på engelska). NASA. https://mars.nasa.gov/mars2020/participate/name-the-rover/. Läst 16 juli 2020.
- ^ [a b c d e f g] NASA. ”Instruments” (på engelska). NASA. https://mars.nasa.gov/mars2020/spacecraft/instruments/. Läst 16 juli 2020.
- ^ NASA. ”Microphones” (på engelska). NASA. https://mars.nasa.gov/mars2020/spacecraft/rover/microphones/. Läst 16 juli 2020.
- ^ NASA. ”Rover cameras” (på engelska). NASA. https://mars.nasa.gov/mars2020/spacecraft/rover/cameras/. Läst 16 juli 2020.
Externa länkar
|
Media som används på denna webbplats
NASA's Hubble Space Telescope took the picture of Mars on June 26, 2001, when Mars was approximately 68 million kilometers (43 million miles) from Earth — the closest Mars has ever been to Earth since 1988. Hubble can see details as small as 16 kilometers (10 miles) across. The colors have been carefully balanced to give a realistic view of Mars' hues as they might appear through a telescope. Especially striking is the large amount of seasonal dust storm activity seen in this image. One large storm system is churning high above the northern polar cap (top of image), and a smaller dust storm cloud can be seen nearby. Another large dust storm is spilling out of the giant Hellas impact basin in the Southern Hemisphere (lower right).
PIA19672: Science Instruments on NASA's Mars 2020 Rover
http://photojournal.jpl.nasa.gov/catalog/PIA19672
This 2015 diagram shows components of the investigations payload for NASA's Mars 2020 rover mission.
Mars 2020 will re-use the basic engineering of NASA's Mars Science Laboratory to send a different rover to Mars, with the latest objectives and instruments, launching in 2020. The rover will carry seven instruments to conduct its science and exploration technology investigations. They are:
Mastcam-Z, an advanced camera system with panoramic and stereoscopic imaging capability and the ability to zoom. The instrument also will determine mineralogy of the Martian surface and assist with rover operations. The principal investigator is James Bell, Arizona State University in Tempe.
SuperCam, an instrument that can provide imaging, chemical composition analysis, and mineralogy. The instrument will also be able to detect the presence of organic compounds in rocks and regolith from a distance. The principal investigator is Roger Wiens, Los Alamos National Laboratory, Los Alamos, New Mexico. This instrument also has a significant contribution from the Centre National d'Etudes Spatiales, Institut de Recherche en Astrophysique et Planétologie (CNES/IRAP) France.
Planetary Instrument for X-ray Lithochemistry (PIXL), an X-ray fluorescence spectrometer that will also contain an imager with high resolution to determine the fine-scale elemental composition of Martian surface materials. PIXL will provide capabilities that permit more detailed detection and analysis of chemical elements than ever before. The principal investigator is Abigail Allwood, NASA's Jet Propulsion Laboratory, Pasadena, California.
Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC), a spectrometer that will provide fine-scale imaging and uses an ultraviolet (UV) laser to determine fine-scale mineralogy and detect organic compounds. SHERLOC will be the first UV Raman spectrometer to fly to the surface of Mars and will provide complementary measurements with other instruments in the payload. SHERLOC includes a high-resolution color camera for microscopic imaging of Mars' surface. The principal investigator is Luther Beegle, JPL.
The Mars Oxygen ISRU Experiment (MOXIE), an exploration technology investigation that will produce oxygen from Martian atmospheric carbon dioxide. The principal investigator is Michael Hecht, Massachusetts Institute of Technology, Cambridge, Massachusetts.
Mars Environmental Dynamics Analyzer (MEDA), a set of sensors that will provide measurements of temperature, wind speed and direction, pressure, relative humidity and dust size and shape. The principal investigator is Jose Rodriguez-Manfredi, Centro de Astrobiologia, Instituto Nacional de Tecnica Aeroespacial, Spain.
The Radar Imager for Mars' Subsurface Experiment (RIMFAX), a ground-penetrating radar that will provide centimeter-scale resolution of the geologic structure of the subsurface. The principal investigator is Svein-Erik Hamran, the Norwegian Defence Research Establishment, Norway.
NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages NASA's Mars Exploration Program for the NASA Science Mission Directorate, Washington.PIA23469: A Light Touch Required for NASA's Mars 2020 Rover
https://photojournal.jpl.nasa.gov/catalog/PIA23469
An engineer working on NASA's Mars 2020 mission uses a solar intensity probe to measure and compare the amount of artificial sunlight that reaches different portions of the rover. To simulate the Sun's rays for the test, powerful xenon lamps several floors below the chamber were illuminated, their light directed onto a mirror at the top of the chamber and reflected down on the spacecraft. The data collected during this test will be used to confirm thermal models the team has generated regarding how the Sun's rays will interact with the 2020 rover while on the surface of Mars.
The image was taken on Oct. 14, 2019, in the Space Simulator Facility at NASA's Jet Propulsion Laboratory in Pasadena, California.
JPL is building and will manage operations of the Mars 2020 rover for the NASA Science Mission Directorate at the agency's headquarters in Washington.
For more information about the mission, go to https://mars.nasa.gov/mars2020/.