Normalplan (geometri)


Ett normalplan är inom geometri ett plan som är vinkelrätt mot en linje eller ett annat plan. Ofta avses ett plan som går genom en punkt på en kurva i rummet, och som är vinkelrätt mot denna kurvas tangent i denna punkt.[1][2]. I den aktuella punkten utgör alltså kurvans tangent en normal till normalplanet (vilket således spänns upp av vektorer i normalriktningen och binormalriktningen[3] - se även Frenet–Serrets formler). I tredimensionell geometri har varje linje eller kurva ett normalplan i varje punkt längs linjen - är linjen rät är alla dessa normalplan parallella.
Normalplanet till en vektor a = (ax, ay, az) i punkten (x0, y0, z0) ges av:[4]
Källor
- ^ Normalplan i Store norske leksikon
- ^ Normalplan i Den Store Danske Encyklopædi, läst 2014-06-29
- ^ Eric W. Weisstein, Normal plane på Wolfram MathWorld.
- ^ Ortsvektorn från (x0, y0, z0) till varje punkt (x, y, z) i normalplanet, det vill säga en vektor som ges av b = (x-x0, y-y0, z-z0), är (per definition) vinkelrät mot vektorn a och således är skalärprodukten a⋅b=0. Se även Eric W. Weisstein, Normal vector (ekvation 4) på Wolfram MathWorld.
Media som används på denna webbplats
Ytnormalen i en punkt på en slät yta är normalvektorn på tangentplanet till ytan i punkten.
Författare/Upphovsman: Hellingspaul, Licens: CC BY-SA 3.0
Example of a space curve (parametric) and its tangent line and normal plane