Nästan överallt
Den här artikeln behöver källhänvisningar för att kunna verifieras. (2020-06) Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan. |
Nästan överallt är ett matematiskt begrepp. Om något gäller nästan överallt, gäller det överallt utom på en nollmängd, vilket är en mängd med måttet 0.
Exempel
- Om två funktioner är lika nästan överallt så är alla integraler över funktionerna lika. Med andra ord, om f och g är lika nästan överallt så är .
- Om vi använder det vanliga Lebesguemåttet är nästan alla reella tal irrationella.
Formell definition
Låt vara ett måttrum och ett mätbart predikat i , dvs mängden
Man säger att gäller µ-nästan överallt i om och endast om
dvs den mängden där predikatet inte stämmer är en µ-nollmängd.
Se även
Media som används på denna webbplats
Författare/Upphovsman: Tkgd2007, Licens: CC BY-SA 3.0
A new incarnation of Image:Question_book-3.svg, which was uploaded by user AzaToth. This file is available on the English version of Wikipedia under the filename en:Image:Question book-new.svg