Nästan-primtal

Inom talteorin är ett naturligt tal k-nästan-primtal om den har exakt k primtalsfaktorer, räknade med multiplicitet. Mer formellt, ett tal n är k-nästan-primtal om och endast om Ω(n) = k, där Ω(n) är det totala antalet av primtal i primtalsfaktoriseringen av n:

Ett naturligt tal är således primtal om och endast om det är ett nästan-primtal, och semiprimtal om och endast om det är ett 2-nästan-primtal. Mängden av k-nästan-primtal brukar betecknas Pk.

De första k-nästan-primtalen är:

kk-nästan-primtalOEIS
12, 3, 5, 7, 11, 13, 17, 19, …A000040
24, 6, 9, 10, 14, 15, 21, 22, …A001358
38, 12, 18, 20, 27, 28, 30, …A014612
416, 24, 36, 40, 54, 56, 60, …A014613
532, 48, 72, 80, 108, 112, …A014614
664, 96, 144, 160, 216, 224, …A046306
7128, 192, 288, 320, 432, 448, …A046308
8256, 384, 576, 640, 864, 896, …A046310
9512, 768, 1152, 1280, 1728, …A046312
101024, 1536, 2304, 2560, …A046314
112048, 3072, 4608, 5120, …A069272
124096, 6144, 9216, 10240, …A069273
138192, 12288, 18432, 20480, …A069274
1416384, 24576, 36864, 40960, …A069275
1532768, 49152, 73728, 81920, …A069276
1665536, 98304, 147456, …A069277
17131072, 196608, 294912, …A069278
18262144, 393216, 589824, …A069279
19524288, 786432, 1179648, …A069280
201048576, 1572864, 2359296, …A069281

Talet πk(n) av positiva heltal mindre än eller lika med n med högst k primtalsdelare (inte nödvändigtvis distinkta) är asymptotiskt till:[1]

ett resultat av Landau. Se även Hardy–Ramanujans sats.

Källor

Den här artikeln är helt eller delvis baserad på material från engelskspråkiga Wikipedia, Almost prime, 12 november 2013.
  1. ^ Tenenbaum, Gerald (1995). Introduction to Analytic and Probabilistic Number Theory. Cambridge University Press. ISBN 0-521-41261-7 

Externa länkar