Multimängd
En multimängd är inom matematik en generalisering av begreppet mängd. En multimängd kan till skillnad från en mängd innehålla ett element flera gånger. I likhet med en mängd spelar dock inte ordningen av elementen någon roll i en multimängd. Det antal gånger ett element förekommer i en multimängd kallas för elementets multiplicitet. Antalet element i en multimängd, medräknat element som förekommer flera gånger, kallas för multimängdens kardinalitet.
Formell definition
En multimängd definieras formellt som ett par (S, m) av en mängd S och en funktion m från S till de positiva heltalen. Funktionen m är multipliciteten för ett elementen i S, dvs, hur många gånger varje element förekommer i multimängden.
Om S är en mängd i ett universum U kan definitionen av en multimängd förenklas till att vara endast en funktion m från U till de naturliga talen, då m antar värdet 0 för de element som inte är i mängden.
Operationer på multimängder
Om A och B är multimängder kan man definiera operationerna multimängdsumma , multimängdunion och multimängdsnitt genom att ett element som har multiplicitet a i A och multiplicitet b i B har multiplicitet
- a + b i .
- max(a, b) i .
- min(a, b) i .
- max(a, b) i .
Exempel
Ett heltal n kan faktoriseras unikt i primtal (upp till ordningen på faktorerna) och denna faktorisering kan uttryckas som en multimängd. Exempelvis kan 120 faktoriseras som 233151, vilket vi kan uttrycka som multimängden {2, 2, 2, 3, 5}. Den underliggande mängden är i detta fallet alla primtalsfaktorer i n.
Om två tal a och b har primtalsfaktoriseringar A och B, uttryckta som multimängder så får man att deras produkt ab har primtalsfaktorisering , deras största gemensamma delare har primtalsfaktorisering och deras minsta gemensamma multipel har primtalsfaktorisering .
Antal multimängder
Antalet multimängder med kardinalitet k där elementen tas från en mängd med ändlig kardinalitet n brukar betecknas . Notationen är vald för att likna den för binomialkoefficienter, som även kan användas för att räkna ut talet:
där täljaren i sista bråket är en ökande potens. Detta kan jämföras med att binomialkoefficient kan skrivas som:
där täljaren i bråket är en fallande potens.
Antalet multimängder uppfyller:
Se även
Referenser
- Stanley, Richard P. (1986). Enumerative Combinatorics. ISBN 0-534-06546-5
- Knuth, Donald (1998). The Art of Computer Programming, Volume 2, Seminumerical Algorithms. Addison-Wesley. ISBN 978-0-201-89684-8