Messier 70

Messier 70
(c) ESA/Hubble & NASA, CC BY 4.0
Klotformiga stjärnhopen Messier 70.
Observationsdata
StjärnbildSkytten
Rektascension18t 43m 12,76s[1]
Deklination-32° 17′ 31,6″[2]
KlassV[4]
Avstånd29 400[3] (pc) ljusår
Skenbar storlek8,0 bågminuter[5]
Skenbar magnitud+9,06[2]
Fysiska egenskaper
Massa1,79 x 10 5[3] solmassor
Uppskattad ålder12,80[6] miljarder år
Upptäckt
Upptäcktsår1780
UpptäckareCharles Messier[5]
Andra beteckningar
M70, GCl 101, NGC 6681[2]
Se också: Klotformiga stjärhopar, Lista över klotformiga stjärhopar

Messier 70 (M70) även känd som NGC 4590 är en klotformig stjärnhop i stjärnbilden Skytten. Den upptäcktes 1780 av Charles Messier.[5]Den välkända kometen Hale–Bopp upptäcktes nära denna stjärnhop 1995.[7]

Egenskaper

Messier 70 befinner sig omkring 29 400[3] ljusår bort från jorden och omkring 6 500 ljusår[8] från Vintergatans centrum. Den är ungefär lika stor och har samma luminositet som sin granne i rymden, M69.[9] Messier 70 har en mycket liten kärnradie på 0,22 ljusår[10] och en halvljusradie på 182,0 ljusår.[11] Hopen har genomgått kärnkollaps, vilket gör den centralt koncentrerad[12] med luminositetsfördelning enligt en potenslag.[8]

Det finns två distinkta populationer av stjärnor i Messier 70, där var och en visar unika överskott. Dessa representerar sannolikt olika generationer av stjärnor.[13] Fem kända variabla stjärnor ligger inom stjärnhopens bredaste radie, tidvattenradien, som alla är RR Lyrae-variabler.[14][15] Hopen kan också ha två blå eftersläntrare nära kärnan.[8]

Galleri

Se även

  • Messierobjekt

Referenser

Den här artikeln är helt eller delvis baserad på material från engelskspråkiga Wikipedia, Messier 70, 19 februari 2021.

Noter

  1. ^ Goldsbury, Ryan; Richer, Harvey B.; Anderson, Jay; Dotter, Aaron; Sarajedini, Ata; Woodley, Kristin (December 2010), ”The ACS Survey of Galactic Globular Clusters. X. New Determinations of Centers for 65 Clusters”, The Astronomical Journal 140 (6): 1830–1837, doi:10.1088/0004-6256/140/6/1830, Bibcode2010AJ....140.1830G. 
  2. ^ [a b c] http://simbad.u-strasbg.fr/simbad/sim-id?Ident=Messier%2070. Hämtad 17 november 2006
  3. ^ [a b c] Boyles, J.; Lorimer, D. R.; Turk, P. J.; Mnatsakanov, R.; Lynch, R. S.; Ransom, S. M.; Freire, P. C.; Belczynski, K. (November 2011), ”Young Radio Pulsars in Galactic Globular Clusters”, The Astrophysical Journal 742 (1): 51, doi:10.1088/0004-637X/742/1/51, Bibcode2011ApJ...742...51B. 
  4. ^ Shapley, Harlow; Sawyer, Helen B. (August 1927), ”A Classification of Globular Clusters”, Harvard College Observatory Bulletin 849 (849): 11–14, Bibcode1927BHarO.849...11S. 
  5. ^ [a b c] Adam, Len (2018), Imaging the Messier Objects Remotely from Your Laptop, The Patrick Moore Practical Astronomy Series, Springer, s. 304, ISBN 978-3319653853, Bibcode2018imor.book.....A, https://books.google.com/books?id=7nNUDwAAQBAJ&pg=PA304 
  6. ^ Forbes, Duncan A.; Bridges, Terry (May 2010), ”Accreted versus in situ Milky Way globular clusters”, Monthly Notices of the Royal Astronomical Society 404 (3): 1203–1214, doi:10.1111/j.1365-2966.2010.16373.x, Bibcode2010MNRAS.404.1203F. 
  7. ^ Mobberley, Martin (2013), It Came From Outer Space Wearing an RAF Blazer!: A Fan's Biography of Sir Patrick Moore, Springer Science & Business Media, s. 483, ISBN 978-3319006093, https://books.google.com/books?id=dfO7BAAAQBAJ&pg=PA483 
  8. ^ [a b c] Watson, Alan M.; Mould, Jeremy R.; Gallagher, John S., III; Ballester, Gilda E.; Burrows, Christopher J.; Casertano, Stefano; Clarke, John T.; Crisp, David; et al. (November 1994), ”Far-ultraviolet imaging of the globular cluster NGC 6681 with WFPC2”, Astrophysical Journal, Part 2 435 (1): L55–L58, doi:10.1086/187593, Bibcode1994ApJ...435L..55W, https://authors.library.caltech.edu/53635/1/1994ApJ___435L__55W.pdf. 
  9. ^ Frommert, Hartmut; Kronberg, Christine (30 August 2007), ”Globular Cluster M70”, SEDS Messier pages (Students for the Exploration and Development of Space (SEDS)), http://messier.seds.org/m/m070.html, läst 4 december 2018. 
  10. ^ Djorgovski, S. (January 1993), ”Physical Parameters of Galactic Globular Clusters”, i Djorgovski, S. G.; Meylan, G., Structure and Dynamics of Globular Clusters. Proceedings of a Workshop held in Berkeley, California, July 15–17, 1992, to Honor the 65th Birthday of Ivan King, "50", San Francisco, California: Astronomical Society of the Pacific, s. 373, ISBN 978-0937707692, Bibcode1993ASPC...50..373D. 
  11. ^ Forbes, Duncan A.; Lasky, Paul; Graham, Alister W.; Spitler, Lee (October 2008), ”Uniting old stellar systems: from globular clusters to giant ellipticals”, Monthly Notices of the Royal Astronomical Society 389 (4): 1924–1936, doi:10.1111/j.1365-2966.2008.13739.x, Bibcode2008MNRAS.389.1924F. 
  12. ^ Pryor, Carlton; McClure, Robert D.; Fletcher, J. M.; Hesser, James E. (August 1989), ”Mass-to-light ratios for globular clusters. I - The centrally concentrated clusters NGC 6624, M28 (NGC 6626), and M70 (NGC 6681)”, Astronomical Journal 98: 596–610, doi:10.1086/115160, Bibcode1989AJ.....98..596P. 
  13. ^ O'Malley, Erin M.; Knaizev, Alexei; McWilliam, Andrew; Chaboyer, Brian (September 2017), ”High-resolution Spectroscopic Abundances of Red Giant Branch Stars in NGC 6681”, The Astrophysical Journal 846 (1): 15, doi:10.3847/1538-4357/aa7b72, 23, Bibcode2017ApJ...846...23O. 
  14. ^ Liller, M. H. (October 1983), ”The variable stars in the field of the globular cluster NGC 6681”, Astronomical Journal 88: 1463–1469, doi:10.1086/113435, Bibcode1983AJ.....88.1463L. 
  15. ^ Clement, Christine M.; Muzzin, Adam; Dufton, Quentin; Ponnampalam, Thivya; Wang, John; Burford, Jay; Richardson, Alan; Rosebery, Tara; et al. (November 2001), ”Variable Stars in Galactic Globular Clusters”, The Astronomical Journal 122 (5): 2587–2599, doi:10.1086/323719, Bibcode2001AJ....122.2587C. 
  16. ^ ”Tight and Bright”. ESA/Hubble Picture of the Week. http://www.spacetelescope.org/images/potw1215a/. Läst 13 april 2012. 

Externa länkar

Media som används på denna webbplats

M70map.png
Författare/Upphovsman: Roberto Mura, Licens: CC BY 3.0
Map of M70
Messier70-HST-Potw1215a.jpg
(c) ESA/Hubble & NASA, CC BY 4.0

In this image, the NASA/ESA Hubble Space Telescope has captured the brilliance of the compact centre of Messier 70, a globular cluster. Quarters are always tight in globular clusters, where the mutual hold of gravity binds together hundreds of thousands of stars in a small region of space. Having this many shining stars piled on top of one another from our perspective makes globular clusters a popular target for amateur skywatchers and scientists alike. Messier 70 offers a special case because it has undergone what is known as a core collapse. In these clusters, even more stars squeeze into the object's core than on average, such that the brightness of the cluster increases steadily towards its centre.

The legions of stars in a globular cluster orbit about a shared centre of gravity. Some stars maintain relatively circular orbits, while others loop out into the cluster's fringes. As the stars interact with each other over time, lighter stars tend to pick up speed and migrate out toward the cluster's edges, while the heavier stars slow and congregate in orbits toward the centre. This huddling effect produces the denser, brighter centres characteristic of core-collapsed clusters. About a fifth of the more than 150 globular clusters in the Milky Way have undergone a core collapse.

Although many globular clusters call the galaxy's edges home, Messier 70 orbits close to the Milky Way's centre, around 30 000 light-years away from the Solar System. It is remarkable that Messier 70 has held together so well, given the strong gravitational pull of the Milky Way's hub.

Messier 70 is only about 68 light-years in diameter and can be seen, albeit very faintly, with binoculars in dark skies in the constellation of Sagittarius (The Archer). French astronomer Charles Messier documented the object in 1780 as the seventieth entry in his famous astronomical catalogue.

This picture was obtained with the Wide Field Camera of Hubble’s Advanced Camera for Surveys. The field of view is around 3.3 by 3.3 arcminutes.

Colours & filters
Band       Wavelength     Telescope
Infrared I 814 nm         Hubble Space Telescope ACS
Optical Pseudogreen (V+I) Hubble Space Telescope ACS
Optical V  606 nm         Hubble Space Telescope ACS
.