| Den här artikeln behöver källhänvisningar för att kunna verifieras. (2020-04) Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan. |
Lista över trigonometriska identiteter är en lista av ekvationer som involverar trigonometriska funktioner och som är sanna för varje enskilt värde av de förekommande variablerna. De skiljer sig från triangelidentiteter, vilka är identiteter som potentiellt involverar vinklar, men även omfattar sidolängder eller andra längder i en triangel. Endast de förstnämnda behandlas i denna artikel. Identiteterna är användbara när uttryck som involverar trigonometriska funktioner måste förenklas. En viktig tillämpning är integration av icke-trigonometriska funktioner: en vanlig teknik är att först göra en substitution med en trigonometrisk funktion och sedan förenkla resultatet med hjälp av en trigonometrisk identitet.
Grundläggande
Sinus, cosinus, sekant och cosekant har perioden 2π. Tangens och cotangens har perioden π. Om k är ett heltal gäller:
En funktion f(x) kallas udda om f(-x) = -f(x) och kallas jämn om f(-x) = f(x). Till exempel är cosinusfunktionen jämn och sinus- och tangensfunktionerna är udda.
Förskjutningar
Samband för en vinkel
Relaterade identiteter
Dubbla vinkeln
Tredubbla vinkeln
Halva vinkeln
Potenser
Samband för två vinklar
Observera att och är olika tecken. Till exempel är cos(x + y) = cos(x)cos(y) - sin(x)sin(y) medan cos(x - y) = cos(x)cos(y) + sin(x)sin(y).
Summor
Produkter
Inversa funktioner
Samband för en vinkel
Kompletterande
Likheter för negativa argument
Reciproka funktioner
Samband för två vinklar
Se även