Lista över matematiska symboler

Det här är en lista över vanligt förekommande symboler som används i matematiska uttryck. Vilka symboler som används för att representera ett matematiskt koncept kan variera. Så används exempelvis i vissa sammanhang tecknet ≡ snarare än = för att representera likhet. Symbolerna i den här listan är sådana som är i mer allmänt bruk.

SymbolFunktionUtläsesOmråde
+additionplusaritmetik
4 + 6 = 10 betyder: om 4 adderas till 6 blir summan, eller resultatet, 10.
43 + 65 = 108; 2 + 7 = 9
subtraktionminusaritmetik
9 − 4 = 5 betyder: om 4 dras från 9 så blir resultatet 5. Tecknet − har sammanlagt tre olika betydelser. Som unär operator betecknar den "motsatta talet", och som prefix betecknar den ett negativt tal. Till exempel: 5 + (−3) = 2 betyder att om fem och minus tre adderas blir resultatet två.
36 − 5 = 31 (subtraktion); 4 − (−3) = 7 (negativt tal); −a är ett positivt tal om a < 0 (motsatta talet)
±plus-minusplus eller minusaritmetik
± är en symbol som både betyder + och −, vilket både kan avse positiva/negativa värden respektive addition och subtraktion. Tecknet används bland annat för att beskriva lösningar till ekvationer med två olika lösningar.
x ± 3 = (x + 3) och (x − 3)
minus-plusminus eller plusaritmetik
∓ är en symbol som både betyder − och +, vilket både kan avse negativa/positiva värden respektive subtraktion och addition. Symbolen används framförallt i samband med ±, och avser då att det omvända tecknet mot ± ska användas.
x ± y ∓ 3 = (x + y − 3) och (x − y + 3)

implikationimplicerar; om .. såsatslogik
AB betyder: om A är sann är B också sann; om A är falsk är ingenting sagt om B.
→ kan betyda samma sak som ⇒, eller den kan syfta på funktioner (se nedan)
x = 2  ⇒  x2 = 4 är sant, men x2 = 4   ⇒  x = 2 är falskt (eftersom x även skulle kunna vara −2)

ekvivalensom och endast om; ommsatslogik
A ⇔ B betyder: A är sann om B är sann, och A är falsk om B är falsk.
x + 5 = y + 2  ⇔  x + 3 = y
eftersomty; därför att; på grund av attsatslogik
Sokrates är en man.

Sokrates är dödlig ∵ alla män är dödliga.

xy = 0 ∵ y = 0
alltsåalltså; detta betyder attsatslogik
Alla män är dödliga och Sokrates är en man.

∴ Sokrates är dödlig.

x + 3 = 4

∴ x = 1

logiskt "och"OCHsatslogik
Påståendet AB är sant omm A och B båda är sanna; annars är det falskt.
n < 4  ∧  n > 2  ⇔  n = 3 då n är ett naturligt tal
logiskt "eller"ELLERsatslogik
Påståendet AB är sant om A eller B (eller båda) är sanna; om båda är falska är påståendet falskt.
n ≥ 4  ∨  n ≤ 2  ⇔ n ≠ 3 då n är ett naturligt tal
¬
/
logisk negationICKEsatslogik
Påståendet ¬A är sant om A är falskt.
Ett snedstreck genom en annan operator är ekvivalent med ett "¬" framför.
¬(A ∧ B) ⇔ (¬A) ∨ (¬B); x ∉ S  ⇔  ¬(x ∈ S)
;semikolonsådant attöverallt
Välj ett xC ; x4 = 1. Då har man fyra olika möjligheter att välja x, nämligen 1, -1, i och -i. Se även ∀ , ∃
allkvantifikatorför alla; för vilken som helst; för varjepredikatlogik
∀ x: P(x) betyder: P(x) är sann för alla x
∀ n ∈ N: n2 ≥ n
existenskvantifikatordet existerarpredikatlogik
∃ x; P(x) betyder: det finns åtminstone ett x sådant att P(x) är sant.
∃ n ∈ N; n + 5 = 2n
∃!entydighetDet existerar ett unikt; det existerar ett och endast ettpredikatlogik
∃! x; P(x) betyder: det finns exakt ett x sådant att P(x) är sant.
∃! n ∈ N; n + 5 = 2n
=likhetsteckenär lika medöverallt
x = y betyder: x och y är olika namn på en och samma sak.
1 + 2 = 6 − 3
:=
:⇔
definitiondefinieras som; definieras genomöverallt
x := y betyder: x definieras att vara ett annat namn på y
P :⇔ Q betyder: P definieras att vara logiskt ekvivalent med Q
cosh x := (1/2)(exp x + exp (−x)); A XOR B :⇔ (A ∨ B) ∧ ¬(A ∧ B)
{ , }mängdklammermängden ...mängdlära
{a,b,c} betyder: mängden som består av a, b, och c
N = {0,1,2,...}
{ : }
{ | }
mängdbyggarnotationmängden av alla ... sådana att ...mängdlära
{x : P(x)} betyder: mängden av alla x för vilka P(x) är sant. {x | P(x)} är samma sak som {x : P(x)}.
{n ∈ N : n2 < 20} = {0,1,2,3,4}

{}
tomma mängdentomma mängdenmängdlära
{} betyder: mängden utan element; ∅ är samma sak
{n ∈ N : 1 < n2 < 4} = {}

tillhöri; finns i; är ett element i; tillhörmängdlära
a ∈ S betyder: a är ett element i mängden S; a ∉ S betyder: a är inte ett element i mängden S
(1/2)−1 ∈ N; 2−1 ∉ N

delmängdär en delmängd avmängdlära
A ⊆ B betyder: varje element i A är också ett element i B
A ⊂ B betyder: A ⊆ B men A ≠ B
A ∩ BA; Q ⊂ R

supermängdär en supermängd tillmängdlära
A ⊇ B betyder: A innehåller delmängden B, d.v.s. varje element i B finns också i A
A ⊃ B betyder: A ⊇ B men A ≠ B
 
unionunionen av ... och ...; unionmängdlära
A ∪ B betyder: mängden som innehåller alla element som finns i A men även alla som finns i B, men inga andra.
A ⊆ B  ⇔  A ∪ B = B
snittsnittet mellan... och ...; snittmängdlära
A ∩ B betyder: mängden som innehåller alla element som A och B har gemensamt.
{x ∈ R : x2 = 1} ∩ N = {1}
\mängddifferensminus; utommängdlära
A \ B betyder: mängden av element som finns i A men inte i B
{1,2,3,4} \ {3,4,5,6} = {1,2}
komplementkomplementet tillmängdlära
betyder: mängden av element som inte tillhör mängden A
( )
[ ]
{ }
funktionsverkan; grupperingavmängdlära
analys
för funktionsverkan: f(x) betyder: värdet av funktionen f som verkar på elementet x
för gruppering: utför operationerna inuti parenteserna först.
Om f(x) := x2f(3) = 32 = 9; (8/4)/2 = 2/2 = 1, men 8/(4/2) = 8/2 = 4
f:XYfunktionspilfrån ... tillfunktioner
fX → Y betyder: funktionen f avbildar mängden X på mängden Y
Betrakta funktionen fZ → N som definieras genom f(x) = x2
naturliga taltal
ℕ (alternativt N) betyder: {0, 1, 2, 3, …}
{ |a| : a ∈ ℤ} = ℕ
heltaltal
ℤ (alternativt Z) betyder: {…, −3, −2, −1, 0, 1, 2, 3, …}
{a : |a| ∈ ℕ} = ℤ
rationella taltal
ℚ (alternativt Q) betyder: {p/q : p,q ∈ ℤ, q ≠ 0}
3.14 ∈ ℚ; π ∉ ℚ
reella taltal
ℝ (alternativt R) betyder: {limn→∞ an : ∀ n ∈ ℕ: an ∈ ℚ, gränsvärdet existerar}
π ∈ ℝ; √(−1) ∉ ℝ
komplexa taltal
ℂ (alternativt C) betyder: {a + bi : a,b ∈ ℝ}
i = ∈ ℂ
<
>
jämförelseär mindre än, är större änpartiell ordning
x < y betyder: x är mindre än y; x > y betyder: x är större än y
x < y  ⇔  y > x

jämförelseär mindre än eller lika med, är större än eller lika medpartiell ordning
x ≤ y betyder: x är mindre än eller lika med y; x ≥ y betyder: x är större än eller lika med y
x ≥ 1  ⇒  x2 ≥ x
kvadratrotkvadratroten ur; kvadratrotreella tal
betyder: det positiva tal vars kvadrat är x
oändlighetoändlighettal
är det element i den utvidgade talaxeln som är större än alla reella tal; det används ofta i gränsvärden
πpipiEuklidisk geometri
betyder: kvoten av en cirkels omkrets med dess diameter
är arean av en cirkel med radien r
!fakultetfakultetkombinatorik
n! är produkten 1·2·...·n
4! = 24 ; 1·2·3·4
| |absolutbeloppabsolutbeloppet av; beloppet avtal
|x| betyder: avståndet längs reella axeln (eller i det komplexa planet) mellan x och noll
|| ||normnormen av; längden avfunktionalanalys
||x|| är normen av elementet x i ett normerat vektorrum
||x+y|| ≤ ||x|| + ||y||
summationsumman av ... över ... från ... till ...aritmetik
betyder:
och utläses: summera k kvadrat över alla k från 1 till 4
produktprodukten av ... över ... från ... till ...aritmetik
betyder:

integrationintegralen från ... till ... av ... med avseende påanalys
betyder: arean mellan x-axeln och grafen av funktionen f från x = a till x = b, där de delar som ligger under x-axeln räknas som negativ area.
cirkulationsintegralcirkulationsintegralanalys
liknande som integral, används för att beteckna en enda integration över en sluten kurva eller loop.
f ´deriveringderivatan av f; f primanalys
f ´(x) är derivatan till funktionen f i punkten x, d.v.s. lutningen av tangenten i denna punkt.
Om f(x) = x2, så är  (x) = 2x
f ´´andraderivataandraderivatan av f; f bisanalys
f ´´(x) är andraderivatan till funktionen f i punkten x, d.v.s. derivatan av funktionen (x).
Om f(x) = x4 + x2, så är f ´´(x) = 12x2 + 2
f(n)n-derivatan-derivatan av f; n:te derivatan av fanalys
f(n)(x), där n är ett heltal, definieras rekursivt genom att säga att n:te derivatan är derivatan av f(n-1).
Om f(x) = ekx, så är f(n)(x) = knekx
gradientdel, nabla, gradienten avanalys
f (x1, …, xn) är vektorn som bildas av alla partiella derivator (df / dx1, …, df / dxn)
Om f (x,y,z) = 3xy + z² så är ∇f = (3y, 3x, 2z)

En bild för användning i text är: Bild:Del.svg ().

∇·divergensdiv, divergensen avanalys
Låt v = (v1, ... ,vn) vara en vektor, och varje vi = vi(x1, ..., xn) är en funktion definierad i en given delmängd av Rn. Divergensen av v definieras då som: ∇·v = ∑k=1n dvk/dxk
Om v (x,y,z) = (3xy2, y+z, xz-2y3), så är ∇·v = 3y2 + 1 + x 
∇×rotationrot, rotationen avanalys
Låt v = (v1, v2 ,v3) vara en vektor i R3, och varje vi = vi(x,y,z) är en funktion definierad i en given delmängd av R3. Rotationen av v definieras då som:

∇×v = ( dv3/dy - dv2/dz, dv1/dz - dv3/dx, dv2/dx - dv1/dy)

Om v (x,y,z) = (3xy2, y+z, xz-2y2), så är ∇×v = (-4y-1, 0-z, 0-6xy) = (-4y-1,-z,-6xy)
2
Laplaceoperatorn analys, vektoranalys
2f (x1, …, xn) = ∇·(∇f) = (d2f / dx21 + … + d2f / dx2n)
Om f (x,y,z) = 3sin(xy) + z2; så är ∇2f = -3(y2 + x2)sin(xy)+2


Se även

Den här artikeln ingår i boken: 
Matematik 

Externa länkar

Media som används på denna webbplats

Question book-4.svg
Författare/Upphovsman: Tkgd2007, Licens: CC BY-SA 3.0
A new incarnation of Image:Question_book-3.svg, which was uploaded by user AzaToth. This file is available on the English version of Wikipedia under the filename en:Image:Question book-new.svg
Office-book.svg
Based on X-office-address-book.svg.
Del.svg
SVG version of File:Del.gif.