Fission

Schematisk bild av en fissionsprocess. uranatom bombarderas med en neutron mot den klyvningsbara atomkärnan. Kärnan blir då instabil, vilket leder till att atomkärnan går i bitar.

Fission betyder klyvning, inom kärnfysiken och kärnkemin klyvningen av atomkärnor, kärnklyvning. Vid fission frigörs energi, vilket under vissa förutsättningar leder till en kedjereaktion där enorma energimängder frisätts i form av värme, partikelstrålning och elektromagnetisk strålning. Sådana kedjereaktioner ligger till grund för kärntekniken. Fission utnyttjas så i kärnkraftverk och kärnvapen. I regel används isotoperna uran-235 och plutonium-239. Flera av restprodukterna som bildas vid fission är radioaktiva, vissa i tusentals år. Motsatsen till fission är fusion, sammanslagning av atomkärnor.

Kärnklyvning

Atomkärnan hos vissa isotoper av grundämnen som plutonium och uran kan om de bombarderas med neutroner fånga in en neutron och därigenom bli så instabila att de klyvs.[1] I processen frigörs neutroner som i sin tur kan klyva fler atomkärnor och därigenom hålla igång en kedjereaktion. Därutöver bildas nya, mindre atomkärnor, och stora mängder energi frigörs som rörelseenergi hos klyvningsprodukterna samt gammastrålning.[1][2] När denna rörelseenergi och strålning sprids i omgivande gods, genom att partiklarna krockar med omkringliggande atomer, innebär det att värmen stiger.

Isotoper som ofta används i kärnkraftverk och vid kärnvapentillverkning är uran-235 och plutonium-239.[1] En möjlig sådan process är:

235U + 1 neutron → 236U → 92Kr + 141Ba + 3 neutroner + 200 MeV energi + γ-strålning

Klyvningsprodukterna från fissionen blir här krypton och barium, två ämnen som är starkt radioaktiva. Andra klyvningsprodukter kan vara 131I (Jod-131), 137Cs (Cesium-137) och 90Sr (Strontium-90).

Fission i kärnvapen

Vissa typer av kärnvapen bygger på en okontrollerad fissionär kedjereaktion. I vätebomber kan en fissionssprängladdning användas för att utlösa en fusionsreaktion.

Fission i kraftverk

Schematisk bild över en kokvattenreaktor.

Atomklyvningen i kärnkraftverk är till skillnad från den i kärnvapen kontrollerad. De ämnen som skall klyvas utgörs av bränslestavar ihopsatta i knippen. Moderatorer som vatten eller grafit används för att tvinga ner hastigheten på neutronerna, och vid behov bromsas hela kedjereaktionen. Den frigjorda energin samlas i kylvatten i form av värme. Ur värmen hämtas rörelseenergi som driver turbiner och generatorer.[2]

Se även

Referenser

  1. ^ [a b c] Ellenberger, Bengt; Hasselqvist, Per Johan; Lång, Öjevind; Nyqvist, Per; Tunek, Viveka (2009). Hammarström, Stina. red. Allt du behöver veta för att överleva i det 21:a århundradet. Italien: Prisma. sid. 151. ISBN 978-91-518-5098-6 
  2. ^ [a b] Ellenberger, Bengt; Hasselqvist, Per Johan; Lång, Öjevind; Nyqvist, Per; Tunek, Viveka (2009). Hammarström, Stina. red. Allt du behöver veta för att överleva i det 21:a århundradet. Italien: Prisma. sid. 173. ISBN 978-91-518-5098-6 

Externa länkar

Media som används på denna webbplats

Fluegelrad.svg
Flügelrad (monochrome radiation trefoil symbol) U+2622 without surrounding circle
Nuclear fission.svg
Simple diagram of nuclear fission. In the first frame, a neutron is about to be captured by the nucleus of a U-235 atom. In the second frame, the neutron has been absorbed and briefly turned the nucleus into a highly excited U-236 atom. In the third frame, the U-236 atom has fissioned, resulting in two fission fragments (Ba-141 and Kr-92) and three neutrons, all with very large amounts of kinetic energy.
Boiling water reactor english.svg
Författare/Upphovsman: Robert Steffens (alias RobbyBer 8 november 2004), SVG: Marlus_Gancher, Antonsusi (talk) using a file from Marlus_Gancher. See File talk:Schema Siedewasserreaktor.svg#License history, Licens: GFDL
Boiling water reactor system diagram