Jupiter
- För andra betydelser, se Jupiter (olika betydelser).
Jupiter ![]() | |
![]() Bild på Jupiter tagen 1979 från Voyager 1. Bilden har förbättrats för att framhäva detaljer. | |
Uppkallad efter | Jupiter |
---|---|
Omloppsbana[1] | |
Epok: J2000 | |
Aphelium | 816 363 000 km[2] (5,4570 AU) |
Perihelium | 740 595 000 km[2] (4,9506 AU) |
Halv storaxel | 778 547 200 km (5,2043 AU) |
Excentricitet | 0,0487[2] |
Siderisk omloppstid | 4331,572 dygn 11,85920 år |
Synodisk omloppstid | 398,88 dygn[2] |
Medelomloppshastighet | 13,06 km/s[2] |
Medelanomali | 18,818° |
Inklination | 1,305° 6,09° mot solens ekvator |
Longitud för uppstigande nod | 100,55615°[2] |
Periheliumargument | 275,066° |
Månar | 92[3] |
Fysikaliska data | |
Avplattning | 0,06487 ± 0,00015 |
Ekvatorradie | 71 492 ± 4 km[4][5] 11,209 gånger jordens |
Polradie | 66 854 ± 10 km[4][5] 10,517 gånger jordens |
Area | 6,21796×1010 km2[5][6] 121,9 gånger jordens |
Volym | 1,43128×1015 km3[2][5] 1321,3 gånger jordens |
Massa | 1,89813×1027 kg[2] 317,8 gånger jordens |
Medeldensitet | 1,326 g/cm3[2][5] |
Ytgravitation (ekvatorn) | 25,92 m/s²[2][5] 2,64 g |
Flykthastighet | 59,5 km/s[2][5] |
Siderisk rotationsperiod | 9,925 h[7] |
Vinkelhastighet (ekvatorn) | 12,6 km/s 45 300 km/h |
Axellutning | 3,13°[2] |
Rektascension (nordpolen) | 268,057° 17 h 52 min 14 s[4] |
Deklination (nordpolen) | 64,496°[4] |
Albedo | 0,343 (bond) 0,538 (geom.)[2] |
Yttemperatur | Medel: 165 K vid 1 bar[2] (112 K vid 0,1 bar[2]) |
Skenbar magnitud | medel -2,7 vid opposition[2] |
Vinkeldiameter | 30,5 – 50,1 bågsekunder[2] |
Atmosfär[2] | |
Skalhöjd | 27 km |
Sammansättning | 89,8±2,0% väte (H2) 10,2±2,0% helium |
Jupiter (symbol: ♃) är den femte planeten från solen och är med stor marginal solsystemets största planet. Dess massa är 2,5 gånger så stor som alla de andra planeternas sammanlagda massa. Planeten är en gasjätte och man är inte säker på om planetens kärna är fast eller flytande. Planeten har fått sitt namn efter den största guden inom romersk mytologi, Jupiter.[8] Fastän namnet är romerskt har planeten varit känd, under andra namn, sedan urminnes tider (till exempel Δίας/Dias på grekiska).
Överblick

Jupiter är vanligtvis det fjärde ljusstarkaste objektet på himlen (efter solen, månen och Venus) med en maximal magnitud på -2,8. Planeten Mars kan dock te sig ljusstarkare vid opposition.[9]
Jupiters diameter är 11 gånger större än jordens[10], massan är 318 gånger större och volymen är 1 321 gånger jordens.[11] Jämfört med solen, som är 1 000 gånger större i volym, är den dock liten.[12]
Jupiters uppkomst
Jupiter uppstod precis som övriga delar av solsystemet för ca 4,6 miljarder år sedan.[13] I likhet med de övriga planeterna bildades Jupiter av rester från det gasmoln och det stoft som gav upphov till solen,[14] där Jupiter tog den största delen av massan som blev över efter att solen hade bildats. Planeten består av samma ämnen som en stjärna, men saknade tillräcklig massa för att antändas.[13] Mycket kring planetens bildande är okänt[15], men det finns två huvudsakliga hypoteser gällande hur Jupiter bildades: kärnanhopning (core accretion) och skivinstabilitet (disk instability).[16]
Enligt kärnanhopningshypotesen så började det material som återstod efter solens bildande att klumpa ihop sig till gradvis större partiklar. Lättare ämnen som väte och helium blåstes iväg av solvinden mot de yttre regionerna av solsystemet. Så småningom avtog solvindens effekt på de lättare ämnena som väte och helium, vilket ledde till att de kunde anhopas till gasjättar. Enligt hypotesen formas de steniga planetkärnorna först, för att sedan dra till sig lättare material som kan bilda de yttre lagren på planeterna.[16]
Hypotesen om skivinstabilitet anger å andra sidan att gasjättarna bildades betydligt snabbare än den tid som kärnanhopningen skulle ta, inom 4-5 miljoner år från det att solen bildades. Förespråkarna till hypotesen menar att de lättare materialen antingen skulle avdunsta eller samlas upp av de övriga planeterna om materialanhopningen skulle ta längre tid för gasjättar.[16] Enligt skivinstabilitetshypotesen så bildades klumpar av gas och damm redan i den protoplanetära skivan (snarare än efter den perioden, som kärnanhopningsteorin anger).[17] Klumparna utvecklades sedan till jätteplaneter likt Jupiter och Saturnus.[16]
Även om det är oklart exakt hur Jupiter bildades så ger observationer från bland annat rymdsonden Juno en bild som ger fördel åt hypotesen om kärnanhopning.[17]
För 4 miljarder år sedan fick Jupiter sin nuvarande bana runt solen.[13]
Fysiska egenskaper
Jupiter har den snabbaste rotationshastigheten av alla solsystemets planeter. Ett Jupiterdygn är knappt tio timmar långt (9 timmar, 55 minuter, 33 sekunder).[18] Den snabba rotationen leder bland annat till en tillplattning av planeten, något som kan ses vid planetens ekvator i form av en "bula" eller en sfäroid. Vid ekvatorn är Jupiters diameter 142 984 km, jämfört med diametern vid polerna som är 133 708 km.[19]
Jupiters sammansättning

Jupiter består huvudsakligen av två ämnen: väte och helium. Temperaturen och trycket stiger ju närmre man kommer planetens centrum. Vätet pressas samman av tyngdkraften och ämnena lägger sig som lager på varandra.[20] [21]Jupiters yttre skikt består av molekylärt väte (H2). Längre in spjälkas molekylerna till separata atomer av hettan och trycket och väteatomerna uppför sig som flytande metall.
Jupiters kärna är hetare än solens yta, men det är okänt vad den består av. Det kan röra sig om ett massivt stenklot, flera gånger större än jorden, eller så kan det metalliska, flytande vätet sträcka sig ända in till centrum.
Ytan
Jupiter har inte någon väldefinierad fast yta, som mellan jordens atmosfär och jordskorpan. Den punkt där atmosfären anses övergå i planetyta definieras istället ligga vid ett tryck av 10 bar, eller tio gånger atmosfärstrycket vid jordytan.[22]
Atmosfär

Jupiter har den största atmosfären av alla planeterna i solsystemet. Den sträcker sig till 5 000 kilometers höjd.[23] Atmosfären består - precis som övriga delar av planeten - till största del av väte, ca 90 % av atmosfären är väte och ungefär 10 % är helium. Det finns även små mängder ammoniak, svavel, metan och vattenånga i atmosfären.[20] Förmodligen finns det tre åtskilda lager av moln i Jupiters atmosfär som tillsammans är 71 km tjocka. De översta molnen består troligen av ammoniakis, mellanlagret av ammoniumhydrosulfid ([NH4]SH) och det innersta laget av vattenis och vattenånga.[13]
Gasplaneterna har starka vindar som är begränsade till breda bälten längs latituden. Vindarna blåser i motsatt riktning längs med dessa bälten. De små skillnaderna i kemisk sammansättning och temperatur mellan dessa band orsakar de färgade bälten som dominerar planetens utseende. Jupiters ekvatorialbälten blir svagare emellanåt, och under år 2010 försvann ett av bältena helt.[24]
Data från rymdsonden Galileos mätsond tyder på att vindarna är mycket starkare än man trott (mer än 400 m/s) och sträcker sig så långt ner som provet var möjligt att observera.[22] De kanske kan sträcka sig ner tusentals kilometer i det inre. Jupiters atmosfär visade sig också vara ganska turbulent. Detta tyder på att Jupiters vindar till största delen drivs av inre hetta, mer än av solens strålning. De intensiva färgerna man ser i Jupiters moln är antagligen resultatet av de kemiska reaktionerna av ämnena i Jupiters atmosfär; kanske är svavel inblandat vars föreningar kan variera i färger, men detaljerna är okända. Färgerna varierar med molnens höjd: blå är lägst, följt av bruna och vita, och röda på toppen. Ibland kan man se de lägre lagren genom hål i de övre.
Magnetfält och strålning
Jupiters magnetosfär (planetens magnetfält) räknas som solsystemets största struktur med en medeldiameter på 20 miljoner kilometer. Det är 150 gånger Jupiters diameter och 15 gånger större än solens diameter.[25] Magnetfältet är mellan 16 och 54 gånger starkare än jordens magnetfält och fångar in laddade partiklar från stora avstånd.[13][26] De laddade partiklarna kommer dels från Jupiters egen joniserade atmosfär (jonosfären), dels från solvinden.[27] Den viktigaste partikelkällan är dock den vulkaniskt aktiva månen Io som avger 1-3 ton svavel och syre varje sekund, dels som enskilda atomer och dels som svaveldioxid.[28] När svaveldioxiden lämnar Io bryts den ner och joniseras, vilket gör att atomerna kan fångas upp av magnetfältet. När de laddade partiklarna från olika källor fångas upp av Jupiters magnetfält accelereras de upp till höga energier[27], i vissa fall tio gånger mer energirika än för motsvarande partiklar i jordens magnetfält.[29] Strålningen runt Jupiter kan ge omfattande skador på rymdfarkoster, komponenter och levande varelser.[29] Strålningsflödet är särskilt starkt runt Jupiters ekvator, där högenergipartiklar bildar en torus (en munk-liknande struktur).[27]
Strålningen har varit ett problem för rymdsonder som skickats till Jupiter och ett forskningsämne inför eventuella framtida bemannade expeditioner till Jupitersystemet.[30][31]

Klimat
Ifall man gjorde en resa genom Jupiters molnlager skulle man se väder som är lika komplext och imponerande som på jorden. Molnen på Jupiter bildas på liknande sätt som molnen på jorden. Genom att studera hur molnen reflekterar ljus och undersöka vid vilka temperaturer de bildas har forskare lyckats identifiera fyra molnlager. Uppifrån och ned består de av ammoniak, ammoniumvätesulfid och vatten.[32] Utöver stormar har Jupiter heta fläckar. De är högtrycksområden där lavafärgade moln försvinner och avslöjar underliggande rosa moln.
Röda fläcken
Det mest omtalade kännetecknet på Jupiter är Stora röda fläcken (på sydsidan), ett gigantiskt stormsystem, dubbelt så stort som jorden.[33] Systemet har varat i minst 400 år och upptäcktes på 1600-talet.[34] Man vet dock att den röda fläcken håller på att krympa och vissa beräkningar tyder på att den kan vara borta om 50-100 år.[34]
Man har känt till andra liknande fast mindre fläckar i decennier. Infraröda observationer och rotationsriktningen tyder på att den röda fläcken är en högtrycksregion vars molntoppar är betydligt högre och kallare än omgivande regioner. Det kan ha funnits liknande strukturer på Saturnus och Neptunus. Man känner inte till hur sådana strukturer kan bestå så länge.

Jupiters ringar
Jupiter har ringar som Saturnus, men mycket mindre. Det var det tredje systemet av ringar, som upptäcktes i solsystemet, efter Saturnus och Uranus ringar. De observerades först 1979 av Voyager 1 och undersöktes sedan grundligt av NASA. Ringarna har de senaste 23 åren också observerats med Hubbleteleskopet och från jorden. Det krävs emellertid mycket stora teleskop för att observera ringarna från jorden.
Till skillnad från Saturnus är Jupiters ringar mörka. Ringsystemet är svagt där ringarna består av fyra delar: en inre del som kallas halon, en relativt sett ljus huvudring som är mycket tunn och två bredare yttre ringar, som kan beskrivas som glänsande men svaga. De båda yttre ringarna har fått namn efter de månar som de hämtat sitt material från, Amalthea och Thebe. .[35] Förmodligen består huvudringen av material från Adrastea och Metis. Ringarna verkar bestå av damm snarare än is.[36] Förmodligen stannar partiklarna inte kvar så länge (beroende på atmosfäriska och magnetiska drag). Om ringarna är permanenta måste de därför hela tiden bli påfyllda. Det finns också indikationer på ytterligare en ring längs Amaltheas bana.[37]
Jupiters påverkan på solsystemet

Jupiters stora massa har påverkat solsystemets utveckling i hög grad; de flesta planeters omloppsbanors plan ligger närmare Jupiters omloppsbanas plan än solens ekvatorialplan. Majoriteten av de kortperiodiska kometerna tillhör Jupiters kometfamilj. Kirkwoodgapen i asteroidbältet orsakas till stor del av Jupiter.[38]
Solsystemets skapelse
Jupiter tros vara orsaken till att asteroidbältet aldrig blev någon planet, eftersom Jupiters gravitation hindrade detta. Jupiter misstänks även delvis vara orsaken till det kraftiga bombardemang som de inre planeterna genomgick i solsystemets tidiga historia. Solsystemet har beskrivits som "solen, Jupiter, och blandat grus".
Shoemaker–Levy 9
16-22 juli 1994 hände något som fick hundratals observatorier på jorden att rikta teleskopen mot Jupiter. En komet, Shoemaker–Levy 9, kolliderade med Jupiter. Kometen splittrades i cirka tjugo delar för att sedan falla ned i Jupiters atmosfär. Explosionerna från kollisionen var så kraftiga att de kunde ses från jorden.[39][40]
Jupiters månar
Jupiter har 95 bekräftade månar (oktober 2024).[41][3]
De inre månarna

Jupiter har åtta reguljära månar (Metis, Adrastea, Amalthea, Thebe, Io, Europa, Ganymedes och Callisto). Dessa förefaller vara uppbyggda av samma material, samma blandning is och sten som kanske utgör Jupiters inre. Dessa månar bildades förmodligen av materia som blev över när Jupiter bildades.
De fyra innersta av de reguljära månarna är Metis, Adrastea, Amalthea och Thebe. Dessa har en diameter på 20–200 km. De fyra övriga kallas de galileiska månarna (Io, Europa, Ganymedes och Callisto) och är betydligt större. Alla fyra är större än dvärgplaneterna, Ganymedes är till och med större än Merkurius. Jupiters reguljära månar växte sig stora eftersom de bildades där stoftet och isen var som tätast.
De galileiska månarna jämförda med jordens måne
Namn | Diameter | Massa | Banradie | Omloppstid | ||||
---|---|---|---|---|---|---|---|---|
km | % | kg | % | km | % | dygn | % | |
Io | 3 643 | 105 | 8,9×1022 | 120 | 421 700 | 110 | 1,77 | 7 |
Europa | 3 122 | 90 | 4,8×1022 | 65 | 671 034 | 175 | 3,55 | 13 |
Ganymedes | 5 262 | 150 | 14,8×1022 | 200 | 1 070 412 | 280 | 7,15 | 26 |
Callisto | 4 821 | 140 | 10,8×1022 | 150 | 1 882 709 | 490 | 16,69 | 61 |
De yttre månarna

De yttre månarna är omkring sextio små månar med en diameter på 1 – 186 km. Teorin som astronomerna har är att dessa månar var asteroider innan de blev infångade av Jupiters gravitation.[42][43][44]
Rymdsonder vid Jupiter
Jupiter har blivit besökt av flera rymdsonder genom åren:
- Pioneer 10, passerade 1973[45][46]
- Pioneer 11, passerade 1974
- Voyager 1, passerade 5 mars 1979[47]
- Voyager 2, passerade 9 juli 1979
- Ulysses, passerade 8 februari 1992 och 4 februari 2004
- Galileo, anlände 1995, utforskade Jupiters månar, togs ur bruk 2003 genom att sändas ner i Jupiter.[48]
- Cassini-Huygens, passerade 2000
- New Horizons, passerade 28 februari 2007
- Juno, anlände 5 juli 2016.
Se även
- Planeterna i Zodiaken
- Jupiters trojaner
- Stor konjunktion
Referenser
Noter
- ^ Yeomans, Donald K. (13 juli 2006). ”HORIZONS System”. NASA JPL. https://ssd.jpl.nasa.gov/?horizons. Läst 8 augusti 2007. — At the site, go to the "web interface" then select "Ephemeris Type: ELEMENTS", "Target Body: Jupiter Barycenter" and "Center: Sun".
- ^ [a b c d e f g h i j k l m n o p q r] Williams, David R. (11 januari 2024). ”Jupiter Fact Sheet”. NASA. https://nssdc.gsfc.nasa.gov/planetary/factsheet/jupiterfact.html. Läst 28 augusti 2024.
- ^ [a b] Sheppard, Scott S.. ”Moons of Jupiter”. Earth & Planets Laboratory. Carnegie Institution for Science. https://sites.google.com/carnegiescience.edu/sheppard/moons/jupitermoons. Läst 4 februari 2023.
- ^ [a b c d] Seidelmann, P. Kenneth (26 januari 2007). ”Report of the IAU/IAGWorking Group on cartographic coordinates and rotational elements: 2006”. Celestial Mechanics and Dynamical Astronomy "90": ss. 155–180. doi:. http://adsabs.harvard.edu/doi/10.1007/s10569-007-9072-y. Läst 28 augusti 2007.
- ^ [a b c d e f g] Avser nivån med ett atmosfärstryck på 1 bar
- ^ ”NASA: Solar System Exploration: Planets: Jupiter: Facts & Figures”. Arkiverad från originalet den 25 december 2013. https://web.archive.org/web/20131225084108/http://solarsystem.nasa.gov/planets/profile.cfm?Object=Jupiter&Display=Facts. Läst 6 februari 2009.
- ^ Seidelmann, P. K.; Abalakin, V. K.; Bursa, M.; Davies, M. E.; de Burgh, C.; Lieske, J. H.; Oberst, J.; Simon, J. L.; Standish, E. M.; Stooke, P.; Thomas, P. C. (2001). ”Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 2000”. HNSKY Planetarium Program. Arkiverad från originalet den 12 maj 2020. https://web.archive.org/web/20200512151452/http://www.hnsky.org/iau-iag.htm. Läst 2 februari 2007.
- ^ Stuart Ross Taylor (2001). Solar system evolution: a new perspective : an inquiry into the chemical composition, origin, and evolution of the solar system (andra upplagan). Cambridge University Press. sid. 208. ISBN 0-521-64130-6
- ^ ”EarthSky | Top 12 brightest objects in our solar system” (på amerikansk engelska). earthsky.org. 8 januari 2023. https://earthsky.org/astronomy-essentials/what-are-the-brightest-objects-in-our-solar-system/. Läst 4 oktober 2024.
- ^ ”Solar System Sizes - NASA Science” (på amerikansk engelska). science.nasa.gov. https://science.nasa.gov/resource/solar-system-sizes/. Läst 4 oktober 2024.
- ^ ”Jupiter Fact Sheet”. nssdc.gsfc.nasa.gov. https://nssdc.gsfc.nasa.gov/planetary/factsheet/jupiterfact.html. Läst 4 oktober 2024.
- ^ Kamran (8 maj 2024). ”Jupiter vs Sun: How Many Jupiters Can Fit Into The Sun?” (på amerikansk engelska). SciQuest. https://sciquest.org/jupiter-vs-sun-how-many-jupiters-can-fit-into-the-sun/. Läst 5 oktober 2024.
- ^ [a b c d e] ”Jupiter: Facts - NASA Science” (på amerikansk engelska). science.nasa.gov. https://science.nasa.gov/jupiter/jupiter-facts/. Läst 5 oktober 2024.
- ^ Astronomica – Galaxer – planeter – stjärnor – stjärnbilder – rymdforskning. Tandem Verlag GmbH (svensk utgåva). 2007. sid. 70. ISBN 978-3-8331-4371-7
- ^ NCCR PlanetS. ”A closer look at Jupiter's origin story” (på engelska). phys.org. https://phys.org/news/2022-04-closer-jupiter-story.html. Läst 7 oktober 2024.
- ^ [a b c d] Nola Taylor Tillman last updated (29 november 2016). ”How Was Jupiter Formed?” (på engelska). Space.com. https://www.space.com/18389-how-was-jupiter-formed.html. Läst 7 oktober 2024.
- ^ [a b] Helled, Ravit; Stevenson, David J.; Lunine, Jonathan I.; Bolton, Scott J.; Nettelmann, Nadine; Atreya, Sushil (2022-05-15). ”Revelations on Jupiter's formation, evolution and interior: Challenges from Juno results”. Icarus 378: sid. 114937. doi: . ISSN 0019-1035. https://www.sciencedirect.com/science/article/pii/S0019103522000586#s0055. Läst 7 oktober 2024.
- ^ ”The Sidereal Period of Rotation vs. the Synodic Period of Rotation”. http://cseligman.com/text/sky/rotationvsday.htm. Läst 8 april 2014.
- ^ Nola Taylor Tillman; Ailsa Harvey last updated (15 februari 2022). ”How Big is Jupiter?” (på engelska). Space.com. https://www.space.com/18392-how-big-is-jupiter.html. Läst 7 oktober 2024.
- ^ [a b] Nola Taylor Tillman published (18 oktober 2018). ”Jupiter's Atmosphere & the Great Red Spot” (på engelska). Space.com. https://www.space.com/18385-jupiter-atmosphere.html. Läst 16 oktober 2024.
- ^ Tibi Puiu (3 december 2020). ”What is Jupiter made of and does it have a solid core?” (på amerikansk engelska). ZME Science. https://www.zmescience.com/feature-post/space-astronomy/solar-system/planets/what-is-jupiter-made-of-0534543/. Läst 21 oktober 2024.
- ^ [a b] Seiff, A.; Kirk, D.B.; Knight, T.C.D. m. fl. (1998). ”Thermal structure of Jupiter's atmosphere near the edge of a 5-μm hot spot in the north equatorial belt”. Journal of Geophysical Research 103 (E10): sid. 22857–22889. doi:. http://onlinelibrary.wiley.com/doi/10.1029/98JE01766/abstract;jsessionid=99982254EA8FC027F9087A344CC70010.f01t02. Läst 8 april 2014.
- ^ Miller, Steve; Aylward, Alan; Millward, George (januari 2005). ”Giant Planet Ionospheres and Thermospheres: The Importance of Ion-Neutral Coupling”. Space Science Reviews 116 (1-2): sid. 319-343. doi:. https://link.springer.com/article/10.1007%2Fs11214-005-1960-4. Läst 8 april 2014.
- ^ http://www.aftonbladet.se/nyheter/article7168154.ab
- ^ ”Jupiter’s radiation belts – and how to survive them” (på engelska). www.esa.int. https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Jupiter_s_radiation_belts_and_how_to_survive_them. Läst 8 oktober 2024.
- ^ Guillot, T.; Stevenson, D. J.; Hubbard, W. B.; Saumon, D. (2004). Chapter 3: The Interior of Jupiter, i Bagenal, F.; Dowling, T. E.; McKinnon, W. B. Jupiter: The Planet, Satellites and Magnetosphere. Cambridge University Press. ISBN 0-521-81808-7
- ^ [a b c] Astronomy Staff (6 februari 2020). ”What is the source of Jupiter’s radiation? | Astronomy.com” (på amerikansk engelska). Astronomy Magazine. https://www.astronomy.com/science/what-is-the-source-of-jupiters-radiation/. Läst 10 oktober 2024.
- ^ Bagenal, Fran (2007-03-01). ”The magnetosphere of Jupiter: Coupling the equator to the poles”. Journal of Atmospheric and Solar-Terrestrial Physics 69 (3): sid. 387–402. doi: . ISSN 1364-6826. https://www.sciencedirect.com/science/article/abs/pii/S1364682606002781?via=ihub. Läst 10 oktober 2024.
- ^ [a b] ”Background: Jovian Trapped Particle Radiation Models”. www.spenvis.oma.be. https://www.spenvis.oma.be/help/background/planetary/traprad_jup.html. Läst 10 oktober 2024.
- ^ De Angelis, G.; Clowdsley, M. S.; Nealy, J. E.; Tripathi, R. K.; Wilson, J. W. (2004-01-01). ”Radiation analysis for manned missions to the Jupiter system”. Advances in Space Research 34 (6): sid. 1395–1403. doi: . ISSN 0273-1177. https://www.sciencedirect.com/science/article/abs/pii/S0273117704003205?via=ihub. Läst 10 oktober 2024.
- ^ Roussos, Elias; Allanson, Oliver; André, Nicolas; Bertucci, Bruna; Branduardi-Raymont, Graziella; Clark, George (2022-12-01). ”The in-situ exploration of Jupiter’s radiation belts” (på engelska). Experimental Astronomy 54 (2): sid. 745–789. doi: . ISSN 1572-9508. https://link.springer.com/article/10.1007/s10686-021-09801-0. Läst 10 oktober 2024.
- ^ R. A. Freedman och W. J. Kaufmann III, Universe, 7de upplagan, sid. 295. W. H. Freeman, New York 2005.
- ^ Cardall, C. Y.; Daunt, S. J (2007). ”The Great Red Spot”. University of Tennessee. http://csep10.phys.utk.edu/astr161/lect/jupiter/redspot.html. Läst 8 april 2014.
- ^ [a b] Kyrala, A. (1982). ”An explanation of the persistence of the Great Red Spot of Jupiter”. Moon and the Planets 26 (1): sid. 105–107. doi:. http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1982M%26P....26..105K&data_type=PDF_HIGH&whole_paper=YES&type=PRINTER&filetype=.pdf. Läst 8 april 2014.
- ^ Showalter & Burns & Cuzzi & Pollack. ”Jupiter's ring system: New results on structure and particle properties”. Icarus 69 (3): sid. 458-498.
- ^ Elkins-Tanton, Linda T. (2006). Jupiter and Saturn. New York: Chelsea House. ISBN 0-8160-5196-8
- ^ Fieseler & Adams & Vandermey & Theilig & Schimmels & Lewis & Ardalan & Alexander (2004). ”The Galileo Star Scanner Observations at Amalthea”. Icarus 169 (2): sid. 390-401.
- ^ Kerr, Richard A. (2004). ”Did Jupiter and Saturn Team Up to Pummel the Inner Solar System?”. Science 306 (5702): sid. 1676. doi:. http://www.sciencemag.org/content/306/5702/1676.1.full. Läst 8 april 2014.
- ^ Baalke, Ron (2007). ”Comet Shoemaker-Levy Collision with Jupiter”. NASA. http://www2.jpl.nasa.gov/sl9/. Läst 8 april 2014.
- ^ Britt, Robert Roy (2004). ”Remnants of 1994 Comet Impact Leave Puzzle at Jupiter”. Space.com. http://www.space.com/273-remnants-1994-comet-impact-leave-puzzle-jupiter.html. Läst 8 april 2014.
- ^ ”Fler månar hittade runt Jupiter”. Aftonbladet. 4 februari 2023. https://www.aftonbladet.se/nyheter/a/O8jVWq/fler-manar-hittade-runt-jupiter. Läst 4 februari 2023.
- ^ ”Satellites of Jupiter”. The Galileo Project. http://galileo.rice.edu/sci/observations/jupiter_satellites.html. Läst 22 augusti 2013.
- ^ Scott S. Sheppard, David C. Jewitt, Carolyn Porco (red. Fran Bagenal, Timothy E. Dowling, William B. McKinnon) (2004). Jupiter's outer satellites and Trojans, i boken “Jupiter. The planet, satellites and magnetosphere”. Cambridge University Press. ISBN 0-521-81808-7
- ^ Nesvorný, D.; Alvarellos, J. L. A.; Dones, L.; Levison, H. F. (2003). ”Orbital and Collisional Evolution of the Irregular Satellites”. The Astronomical Journal 126 (1): sid. 398-429. doi:. http://iopscience.iop.org/1538-3881/126/1/398/. Läst 8 april 2014.
- ^ ”Pioneer 10 Mission Profile”. NASA. 1997. Arkiverad från originalet den 6 november 2015. https://web.archive.org/web/20151106205010/http://quest.nasa.gov/sso/cool/pioneer10/mission/. Läst 8 april 2014.
- ^ ”Pioneer 10: Mission to Jupiter and Beyond”. Glenn Research Center. NASA. 2007. Arkiverad från originalet den 6 november 2015. https://web.archive.org/web/20151106205010/http://quest.nasa.gov/sso/cool/pioneer10/mission/. Läst 8 april 2014.
- ^ Burgess, Eric (1982). By Jupiter: Odysseys to a Giant. Columbia University Press, New York. ISBN 0-231-05176-X
- ^ McConnell, Shannon (2003). ”Galileo: Journey to Jupiter”. NASA. Arkiverad från originalet den 2 oktober 2006. https://web.archive.org/web/20061002021123/http://solarsystem.nasa.gov/galileo/. Läst 8 april 2014.
Externa länkar
Wikimedia Commons har media som rör Jupiter.
Wiktionary har ett uppslag om Jupiter.
- NASA – Jupiter Fact Sheet
|
|
|
|
Media som används på denna webbplats
Författare/Upphovsman: Kwamikagami, Licens: CC BY-SA 4.0
heavier line weight (1.333 px), ♃ U+2643
Gasjättarnas inre.
Jupiter seen by Voyager 1 probe with blue filter. One image was taken every Jupiter day (approximately 10 hours). These pictures were taken from 01/06 to 02/03, 1979 ; and Voyager 1 flew from 58 million to 31 million kilometers from Jupiter during that time. The small, round, dark spots appearing in some frames are the shadows cast by the moons passing between Jupiter and the Sun, while the small, white flashes around the planet, are the moons themselves. Suggested for English Wikipedia:alternative text for images: animated view of planet getting larger. These pictures were taken every 10 hours over 28 days in 1979; each frame shows Jupiter at the same local time with the Great Red Spot appearing stationary within its cloud belt while clouds move right to left past it; other cloud belts move left to right. The small, round, dark spots appearing in some frames are the shadows cast by the moons passing between Jupiter and the Sun, while the small, white flashes around the planet, are the moons themselves.
This picture was made with the Earth from Media:Mercury_Earth_Comparison.png and Media:Jupiter.jpg. Approximate scale is 240 km/px.
Major Solar System objects. Sizes of planets and Sun are roughly to scale, but distances are not. This is not a diagram of all known moons – small gas giants' moons and Pluto's S/2011 P 1 moon are not shown.
The Great Red Spot as seen from Voyager 1 This dramatic view of Jupiter's Great Red Spot and its surroundings was obtained by Voyager 1 on February 25, 1979, when the spacecraft was 5.7 million miles (9.2 million kilometers) from Jupiter. Cloud details as small as 100 miles (160 kilometers) across can be seen here. The colorful, wavy cloud pattern to the left of the Red Spot is a region of extraordinarily complex and variable wave motion. To give a sense of Jupiter's scale, the white oval storm directly below the Great Red Spot is approximately the same diameter as Earth.
Suggested for English Wikipedia:alternative text for images: quarter view of Jupiter with the Great Red Spot at middle top as orange oval within a turbulent belt of wavy clouds. Below the Great Red Spot are various bands of turbulent clouds with smaller spots: some pale cream, others dark brown.
Original Caption Released with Image: This processed color image of Jupiter was produced in 1990 by the U.S. Geological Survey from a Voyager 2 image captured in 1979. The colors have been enhanced to bring out detail. Zones of light-colored, ascending clouds alternate with bands of dark, descending clouds. The clouds travel around the planet in alternating eastward and westward belts at speeds of up to 540 kilometers per hour. Tremendous storms as big as Earthly continents surge around the planet. The Great Red Spot (oval shape toward the lower-left) is an enormous anticyclonic storm that drifts along its belt, eventually circling the entire planet.
This "family portrait," a composite of the Jovian system, includes the edge of Jupiter with its Great Red Spot, and Jupiter's four largest moons, known as the Galilean satellites. From top to bottom, the moons shown are Io, Europa, Ganymede and Callisto. The Great Red Spot, a storm in Jupiter's atmosphere, is at least 300 years old. Winds blow counterclockwise around the Great Red Spot at about 400 kilometers per hour (250 miles per hour). The storm is larger than one Earth diameter from north to south, and more than two Earth diameters from east to west. In this oblique view, the Great Red Spot appears longer in the north-south direction. Europa, the smallest of the four moons, is about the size of Earth's moon, while Ganymede is the largest moon in the solar system. North is at the top of this composite picture in which the massive planet and its largest satellites have all been scaled to a common factor of 15 kilometers (9 miles) per picture element. The Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft obtained the Jupiter, Io and Ganymede images in June 1996, while the Europa images were obtained in September 1996. Because Galileo focuses on high resolution imaging of regional areas on Callisto rather than global coverage, the portrait of Callisto is from the 1979 flyby of NASA's Voyager spacecraft.
This composite includes the four largest moons of Jupiter which are known as the Galilean satellites. The Galilean satellites were first seen by the Italian astronomer Galileo Galilei in 1610. Shown from left to right in order of increasing distance from Jupiter, Io is closest, followed by Europa, Ganymede, and Callisto.
The order of these satellites from the planet Jupiter helps to explain some of the visible differences among the moons. Io is subject to the strongest tidal stresses from the massive planet. These stresses generate internal heating which is released at the surface and makes Io the most volcanically active body in our solar system. Europa appears to be strongly differentiated with a rock/iron core, an ice layer at its surface, and the potential for local or global zones of water between these layers. Tectonic resurfacing brightens terrain on the less active and partially differentiated moon Ganymede. Callisto, furthest from Jupiter, appears heavily cratered at low resolutions and shows no evidence of internal activity.
North is to the top of this composite picture in which these satellites have all been scaled to a common factor of 10 kilometers (6 miles) per picture element.
The Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft acquired the Io and Ganymede images in June 1996, the Europa images in September 1996, and the Callisto images in November 1997.
Launched in October 1989, the spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment.Rings of Jupiter.