| Den här artikeln behöver källhänvisningar för att kunna verifieras. (2023-07) Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan. |
Jacobimatris (också kallad jacobian eller funktionalmatris), efter Carl Gustav Jacob Jacobi, är en matris bestående av olika partialderivator som tillhör ett system av funktioner. Tillsammans med sin determinant (jacobideterminanten) används den inom vektoranalysen. Både matrisen och dess determinant kan ibland något informellt benämnas jacobian.
Jacobimatris
Jacobimatrisen är en matris innehållande alla första ordningens partiella derivator för en vektorvärd funktion, och är av betydelse då den representerar den bästa linjära approximationen av en differentierbar funktion i en omgivning till en given punkt. Jacobimatrisen kan därmed ses som en motsvarighet till derivata för vektorvärda funktioner.
Låt vara en funktion från ett euklidiskt rum av dimension n till ett euklidiskt rum av dimension m. En sådan funktion ges av m reella funktioner,
Om de existerar kan de partiella derivatorna av dessa funktioner ordnas i en jacobimatris enligt
Ett alternativt skrivsätt är
Matrisens i:e rad ges alltså av gradienten till .
Om p är en punkt i och är differentierbar i p, så ges dess derivata av . Här kommer den linjära transformation som beskrivs av att vara den bästa möjliga approximationen av i en omgivning till p, i den meningen att
för x nära p.
Invers
Om jacobimatrisen är kvadratisk och inverterbar, kan dess invers antingen fås genom gausselimination, eller genom att inse att jacobimatrisen transformerar vektorn bestående av differentialerna av till vektorn bestående av differentialerna av , nämligen
Genom att multiplicera båda sidor med inversen av jacobimatrisen fås
Om
istället är en funktion från ett euklidiskt rum av dimension n till ett annat euklidiskt rum av dimension n, given av de n reella funktionerna
så kommer
att vara den matris som transformerar vektorn bestående av differentialerna av
till vektorn bestående av differentialerna av
- ,
nämligen
Genom identifiering mellan de sista ekvationerna fås att
Exempel
Ett variabelbyte från sfäriska koordinater till kartesiska koordinater beskrivs av funktionen
- .
eller, i mer explicit form, som
Jacobimatrisen för detta variabelbyte är
Jacobimatrisen för funktionen med komponenterna
är
vilket visar att jacobimatrisen inte behöver vara kvadratisk.
Jacobideterminanten
Om , det vill säga om är en funktion från ett n-dimensionellt rum till ett annat n-dimensionellt rum, så är jacobimatrisen kvadratisk och därmed är dess determinant väldefinierad. Denna kallas jacobideterminanten och dess värde i en punkt ger viktig information om funktionen i denna omgivning. Om är kontinuerligt differentierbar är den även inverterbar i närheten av p om jacobideterminanten är nollskild i p. Om determinanten är positiv i p bevararas :s orientering och om den är negativ skiftas :s orientering. Absolutvärdet av jacobideterminanten i p är den faktor med vilken skalar om arean/volymen/hypervolymen i närheten av p, vilket används vid variabelsubstitution.
Exempel
Jacobideterminanten för funktionen med komponenterna
är
Av detta framgår att kastar om orienteringen i närheten av alla punkter där och har samma tecken och att funktionen är lokalt inverterbar överallt utom i eller . Ett litet objekt som befinner sig i närheten av (1, 1, 1) som mappas om av kommer att öka sin volym 40 gånger.
Användningar
Jacobideterminanten används i samband med variabelbyten vid integrering av funktioner för att kompensera för basbytet. Den kommer då att förekomma som en multiplikativ term (skalfaktor) under integraltecknet. Det är vanligtvis nödvändigt att variabelbytet är injektivt, vilket innebär att jacobideterminanten är väldefinierad.
Exempel
Användning av jacobideterminanten vid beräkning av integraler kan demonstreras med en beräkning av volymen av enhetssfären . Låt . Volym av D ges då av uttrycket
- .
Görs ett variabelbyte till sfäriska koordinater enligt
transformeras volymelementet dx dy dz till
och området D beskrivs i de nya koordinaterna av
- .
I strikt mening är detta koordinatbyte inte injektivt i hela D, men om linjen x = y = 0 exkluderas fås ett område med samma volym som D där koordinatbytet är injektivt och det går att tillämpa koordinatbytet i volymintegralen. Volymintegralen blir därför
Se även