Harmoniskt medelvärde
Den här artikeln behöver källhänvisningar för att kunna verifieras. (2022-09) Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan. |
Harmoniskt medelvärde är ett av de tre Pythagoreiska medelvärdena och används främst för att beskriva tillväxtfenomen.
Definition
Diskret fördelning
Det harmoniska medelvärdet H av de positiva reella talen x1, x2, ..., xn är definierad som det inverterade värdet av det aritmetiska medelvärdet av reciprokerna till x1, x2, ..., xn:
Exempel
Det harmoniska medelvärdet av 1, 2, och 4 är
Kontinuerlig fördelning
För en kontinuerlig fördelning är det harmoniska medelvärdet
Viktat harmoniskt medelvärde
Om en mängd av vikter är associerad med en datamängd , definieras det viktade harmoniska medelvärdet som
Det harmoniska medelvärdet kan ses som ett specialfall med vikterna = 1.
Tillämpningar
Harmoniskt medelvärde används inom andra vetenskaper som till exempel elektrofysik och geologi. Inom geologin används harmoniskt medelvärde för bestämning av vattengenomsläppigheten i olika jordarter.
Exempel
Antag att en person färdas sträckorna s1,..., sn med hastigheterna v1,..., vn. Genomsnittshastigheten v för hela resan ges av det viktade harmoniska medelvärdet
Medelhastigheten för en bil som kör en 120 km lång sträcka fram och tillbaka mellan hemmet och sommarstugan, först med hastigheten 60 km/h till sommarstugan och sedan tillbaka med hastigheten 120 km/h, är lika med det harmoniska medelvärdet 80 km/h, inte det aritmetiska medelvärdet som är 90 km/h.
Anledningen är att det tar två timmar att köra 120 km med hastigheten 60 km/h och att köra samma sträcka med hastigheten 120 km/h tar en timma. Totalt har bilen kört 240 km under 3 timmar och om vi delar 240 km med 3 timmar blir detta 80 km/h, vilket är lika med det harmoniska medelvärdet:
Jämförelse med andra medelvärden
Medelvärden av två tal, a och b, kan konstrueras geometriskt med hjälp av en halvcirkel med diametern a + b.
- A: Aritmetiska medelvärdet
- Q: Kvadratiska medelvärdet
- H: Harmoniska medelvärdet
- G: Geometriska medelvärdet
- Q: Kvadratiska medelvärdet
Det framgår att
Denna ordning gäller även för ett godtyckligt antal tal.
|
Media som används på denna webbplats
Författare/Upphovsman: Tkgd2007, Licens: CC BY-SA 3.0
A new incarnation of Image:Question_book-3.svg, which was uploaded by user AzaToth. This file is available on the English version of Wikipedia under the filename en:Image:Question book-new.svg