Gravitationskollaps
Den här artikeln behöver källhänvisningar för att kunna verifieras. (2018-09) Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan. |
Med gravitationskollaps avses att en samling materia faller samman mot sin tyngdpunkt genom inflytande av de ingående delarnas inbördes gravitation.
Gravitationskollaps är ett centralt begrepp inom astronomin, som avgör hur och när strukturer av olika slag bildas i universum. Den inträffar när alla andra verksamma krafter inte lyckas upprätthålla ett tillräckligt högt tryck för att motverka gravitationen och hålla materiesamlingen i hydrostatisk jämvikt. Materiesamlingen kan vara såväl gasformig som massiv. En ursprungligen jämn fördelning av materia kommer att utvecklas med tiden och till slut kollapsa till annan form.
De kollapsande delarna kan vara komponenter som uppträder som gas i form av stora partiklar, stoft, molekyler, atomer, elektroner, atomkärnor eller neutroner och ge upphov till en hierarki av strukturer och objekt som galaxhopar, galaxer, stjärnhopar, stjärnor i olika stadier och planeter.
Gravitationskollaps är nödvändig för att stjärnor ska såväl födas som dö. Gravitationen i en himlakropp kan dra till sig ytterligare materia så att den blir större och gravitationen ökar och passerar gränsen för kollaps. På så sätt uppstår olika stora stjärnor och de med störst massa avslutar sin levnad som kompakta objekt - vita dvärgar, neutronstjärnor, kvarkstjärnor eller svarta hål, där gravitationen är så stor att inte ens ljus kan lämna himlakroppen.
Se även
Media som används på denna webbplats
Författare/Upphovsman: Tkgd2007, Licens: CC BY-SA 3.0
A new incarnation of Image:Question_book-3.svg, which was uploaded by user AzaToth. This file is available on the English version of Wikipedia under the filename en:Image:Question book-new.svg
A Bird's eye view of a Galaxy Collision
What appears as a bird's head, leaning over to snatch up a tasty meal, is a striking example of a galaxy collision in NGC 6745. A large spiral galaxy, with its nucleus still intact, peers at the smaller passing galaxy (nearly out of the field of view at lower right), while a bright blue beak and bright whitish-blue top feathers show the distinct path taken during the smaller galaxy's journey. These galaxies did not merely interact gravitationally as they passed one another, they actually collided. When galaxies collide, the stars that normally comprise the major portion of the luminous mass of each of the two galaxies will almost never collide with each other, but will pass rather freely between each other with little damage. This occurs because the physical size of individual stars is tiny compared to their typical separations, making the chance of physical encounter relatively small. In our own Milky Way galaxy, the space between our Sun and our nearest stellar neighbor, Proxima Centauri (part of the Alpha Centauri triple system), is a vast 4.3 light-years. However, the situation is quite different for the interstellar media in the above two galaxies - material consisting largely of clouds of atomic and molecular gases and of tiny particles of matter and dust, strongly coupled to the gas. Wherever the interstellar clouds of the two galaxies collide, they do not freely move past each other without interruption but, rather, suffer a damaging collision. High relative velocities cause ram pressures at the surface of contact between the interacting interstellar clouds. This pressure, in turn, produces material densities sufficiently extreme as to trigger star formation through gravitational collapse. The hot blue stars in this image are evidence of this star formation. This image was created by the Hubble Heritage Team using NASA Hubble Space Telescope archive data taken with the Wide Field Planetary Camera 2 in March 1996. Members of the science team, which include Roger Lynds (KPNO/NOAO) and Earl J. O'Neil, Jr. (Steward Obs.), used infrared, red, visual and ultravoilet filters to image this galaxy system. Lynds and O'Neil are currently using the Hubble data along with ground-based radio observations to further study the interactions within NGC 6745. Image Credit: NASA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: Roger Lynds (KPNO/NOAO)
Författare/Upphovsman: R.J. Hall, Licens: CC BY 2.5
Simplified core collapse scenario: (a) A massive, evolved star has onion-layered shells of elements undergoing fusion. An inert iron core is formed from the fusion of Silicon in the inner-most shell. (b) This iron core reaches Chandrasekhar-mass and starts to collapse, with the outer core (black arrows) moving at supersonic velocity (shocked) while the denser inner core (white arrows) travel sub-sonically; (c) The inner core compresses into neutrons and the gravitational energy is converted into neutrinos. (d) The infalling material bounces off the nucleus and forms an outward-propagating shock wave (red). (e) The shock begins to stall as nuclear processes drain energy away, but it is re-invigorated by interaction with neutrinos. (f) The material outside the inner core is ejected, leaving behind only a degenerate remnant.