Gloeopeniophorella

Gloeopeniophorella
Systematik
DomänEukaryoter
Eukaryota
RikeSvampar
Fungi
DivisionBasidiesvampar
Basidiomycota
KlassAgaricomycetes
OrdningRussulales
SläkteGloeopeniophorella
Vetenskapligt namn
§ Gloeopeniophorella

Gloeopeniophorella är ett släkte av svampar. Enligt Catalogue of Life[1] ingår Gloeopeniophorella i ordningen Russulales, klassen Agaricomycetes, divisionen basidiesvampar och riket svampar,[1] men enligt Dyntaxa[2] är tillhörigheten istället familjen Stereaceae, ordningen Russulales, klassen Agaricomycetes, divisionen basidiesvampar och riket svampar.[2]

Russulales

Russulaceae



Peniophoraceae



Lachnocladiaceae



Hybogasteraceae



Hericiaceae



Echinodontiaceae



Bondarzewiaceae



Auriscalpiaceae



Amylostereaceae



Albatrellaceae



Stephanosporaceae



Stereaceae


Gloeopeniophorella

Gloeopeniophorella rubroflava



Gloeopeniophorella sacrata



Gloeopeniophorella singulare




Scopulodontia



Haloaleurodiscus



Scytinostromella



Aleurocystidiellum



Gloeoasterostroma



Gloeohypochnicium



Källor

  1. ^ [a b] Bisby F.A., Roskov Y.R., Orrell T.M., Nicolson D., Paglinawan L.E., Bailly N., Kirk P.M., Bourgoin T., Baillargeon G., Ouvrard D. (red.) (9 januari 2011). ”Species 2000 & ITIS Catalogue of Life: 2011 Annual Checklist.”. Species 2000: Reading, UK. http://www.catalogueoflife.org/annual-checklist/2011/search/all/key/gloeopeniophorella/match/1. Läst 24 september 2012. 
  2. ^ [a b] Dyntaxa Gloeopeniophorella

Bildgalleri

Media som används på denna webbplats

Robot icon.svg
Robot icon
Boidinia-Maximum-Likelihood-Tree.svg
Författare/Upphovsman: Thkgk, Licens: CC0

Figure. Figure. Molecular Phylogenetic analysis of Boidinia and Gloeopeniophorella by Maximum Likelihood method
The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model [1]. The tree with the highest log likelihood (-4514.2002) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. A Strict Consensus Maximum-Parsimony tree was used as an initial tree in the heuristic search. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.5454)). The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 59.4678% sites). The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 19 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 1167 positions in the final dataset. Evolutionary analyses were conducted in MEGA6 [2]


1. Kimura M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111-120.
2. Tamura K., Stecher G., Peterson D., Filipski A., and Kumar S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution30: 2725-2729.

List with GenBank Sequences
Boidinia-Minimum Evolution-Tree.svg
Författare/Upphovsman: Thkgk, Licens: CC0

Figure. Evolutionary relationships of Boidinia and Gloeopeniophorella
The evolutionary history was inferred using the Minimum Evolution method [1]. The optimal tree with the sum of branch length = 0.44296624 is shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches [2]. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Kimura 2-parameter method [3] and are in the units of the number of base substitutions per site. The ME tree was searched using the Close-Neighbor-Interchange (CNI) algorithm [4] at a search level of 2. The Neighbor-joining algorithm [5] was used to generate the initial tree. The analysis involved 17 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 1188 positions in the final dataset. Evolutionary analyses were conducted in MEGA6 [6]


1. Rzhetsky A. and Nei M. (1992). A simple method for estimating and testing minimum evolution trees. Molecular Biology and Evolution 9:945-967.
2. Felsenstein J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791.
3. Kimura M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111-120.
4. Nei M. and Kumar S. (2000). Molecular Evolution and Phylogenetics. Oxford University Press, New York.
5. Saitou N. and Nei M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406-425.
6. Tamura K., Stecher G., Peterson D., Filipski A., and Kumar S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution30: 2725-2729.

List with GenBank Sequences