Geometriskt medelvärde

Ett geometriskt medelvärde av n positiva tal a1,..., an beräknas enligt

Geometriskt medelvärde kan benämnas som n:te roten av talens produkt.

Geometriskt medelvärde används exempelvis vid uträkning av den genomsnittliga räntan för ett antal år.

Det geometriska medelvärdet av är mindre än eller lika med motsvarande aritmetiska medelvärde (), vilket brukar kallas för AM-GM-olikheten.

Egenskaper

Den grundläggande egenskapen hos det geometriska medelvärdet, som inte gäller för något annat medelvärde, är att

Detta gör det geometriska medelvärdet det enda riktiga medelvärdet för normaliserade resultat, det vill säga resultat som presenteras som förhållanden till referensvärden.

Detta är till exempel fallet när datorers prestanda jämförs med avseende på en referensdator eller vid beräkning av ett enda medeltal från flera heterogena källor (exempelvis livslängd, utbildningsår och spädbarnsdödlighet). I dessa fall kan det aritmetiska eller harmoniska medelvärdet ändra rangordningen av de olika värdena beroende på vad som används som referens. Ta till exempel följande jämförelse av exekveringstid för datorprogram:

 Dator ADator BDator C
Program 111020
Program 2100010020
Aritmetiskt medelvärde500,55520
Geometriskt medelvärde31,62231,62220

Det aritmetiska och geometriska medelvärdet indikerar båda att datorn C är den snabbaste. Men genom att presentera på lämpligt sätt normaliserade värden och använda det aritmetiska medelvärdet, kan det visas att någon av de andra två datorerna är den snabbaste. Normalisering av A:s resultat ger A som den snabbaste datorn enligt det aritmetiska medelvärdet:

 Dator ADator BDator C
Program 111020
Program 210,10,02
Aritmetiskt medelvärde15,0510,01
Geometriskt medelvärde110,632

och att därefter normalisera B:s resultat ger B som den snabbaste datorn enligt det aritmetiska medelvärdet:

 Dator ADator BDator C
Program 10,112
Program 21010,2
Aritmetiskt medelvärde5,0511,1
Geometriskt medelvärde110,632

Det geometriska medelvärdets rangordningar förblir desamma som den rangordning som erhålls med icke normaliserade värden.

Jämförelse med andra medelvärden

Geometrisk jämförelse av medelvärden

Medelvärden av två tal, a och b, kan konstrueras geometriskt med hjälp av en halvcirkel med diametern a + b.

A: Aritmetiska medelvärdet
Q: Kvadratiska medelvärdet
H: Harmoniska medelvärdet
G: Geometriska medelvärdet

Det framgår att

Denna ordning gäller även för ett godtyckligt antal tal.

Media som används på denna webbplats

Question book-4.svg
Författare/Upphovsman: Tkgd2007, Licens: CC BY-SA 3.0
A new incarnation of Image:Question_book-3.svg, which was uploaded by user AzaToth. This file is available on the English version of Wikipedia under the filename en:Image:Question book-new.svg
Mean-values-2.png
Författare/Upphovsman: Svjo, Licens: CC BY-SA 4.0
Mean values