Fullständighetsrelationen
Fullständighetsrelationen är en relation av central betydelse inom kvantmekaniken. Relationen innebär att summan av samtliga projektionsoperatorer på en ortonormal bas av kvanttillstånd i ett Hilbertrum är lika med identitetsoperatorn.
En ortonormal bas av kvanttillstånd kan erhållas i form av egentillstånden till en godtycklig observabel, som inom kvantmekaniken representeras av en Hermitesk operator. Projektionsoperatorn på ett egentillstånd med egenvärdet ges av den yttre produkten . Spektrumet kan vara diskret eller kontinuerligt.
För ett diskret spektrum ges fullständighetsrelationen av
Fullständighetsrelationen
(diskret spektrum)
medan den för ett kontinuerligt spektrum ges av
Fullständighetsrelationen
(kontinuerligt spektrum)
Om vissa delar av spektrumet är diskreta medan andra delar är kontinuerliga, så ges fullständighetsrelationen av en summa över de diskreta delarna och en integral över de kontinuerliga delarna.
Härledning
Låt beteckna en ortonormal bas av kvanttillstånd med , där är Kroneckers delta. Varje annat kvanttillstånd kan uttryckas som en linjärkombination av dessa tillstånd:
Eftersom basens tillstånd är ortonormala är koefficienterna entydigt bestämda:
Således kan ett godtyckligt tillstånd uttryckas som
Eftersom denna relation gäller för ett godtyckligt följer det att
där betecknar identitetsoperatorn. Motsvarande härledning kan användas i fallet med ett kontinuerligt spektrum.
Se även
Referenser
- Sakurai, J.J.; Jim Napolitano (2007). Modern Quantum Mechanics (andra upplagan). Pearson Education. ISBN 9780321503367