Elementär matris

Inom matematiken är elementära matriser matriser som skiljer sig från enhetsmatrisen med avseende på en elementär radoperation. Matrismultiplikation av en matris med en elementär matris från vänster svarar mot en elementär radoperation och multiplikation från höger svarar mot en elementär kolumnoperation.

Ekvationssystemlösning

Elementära radoperationer ändrar inte lösningsmängden till ett linjärt ekvationssystem, något som utnyttjas vid Gausselimination. Varje radoperation som används vid Gausselimination motsvaras av en elementär matris.

Radoperationer som elementära matriser

Det finns tre typer av elementära matriser som svarar mot tre olika elementära radoperationer:

  • Radbyten, två rader byter plats:
  • Radmultiplikation, en rad multipliceras med en konstant:
  • Radaddition, en rad multipliceras med en konstant och adderas till en annan rad:

Radbytesmatriser

En elementär matris som kastar om raderna i och j för en matris kan skrivas

Matrisen har ettor i diagonalen förutom för två rader där ettorna anger de rader som skall kastas om. fås genom att kasta om raderna i och j i motsvarande enhetsmatris.

Egenskaper

  • är sin egen invers då

Exempel

Nedanstående elementära matris byter plats på rad 1 och rad 2 i en 3×n-matris:

Multiplikation med en 3×4-matris A:

Radmultiplikationsmatriser

En elementär matris som multiplicerar en rad i med en konstant k kan skrivas

Matrisen kan bildas genom att rad i i motsvarande enhetsmatris multipliceras med k.

Egenskaper

  • Matrisen och dess invers är diagonal

Exempel

En elementär matris som multiplicerar rad 2 i en 3×n-matris med 3 kan skrivas som

och multiplicerad med en 3×4-matris A

Radadditionsmatriser

En matris som adderar rad j multiplicerad med m till rad i kan skrivas som

Matrisen kan bildas från en enhetsmatris genom att rad j adderas till rad i m gånger.

Egenskaper

  • Matrisen och dess invers är triangulär

Exempel

En matris som subtraherar rad 1 multiplicerad med 2 från rad 3 för en 3×n-matris kan skrivas

och multiplicerad med en 3×4-matris A:

Se även


Media som används på denna webbplats

Linear subspaces with shading.svg
Författare/Upphovsman: Alksentrs at en.wikipedia, Licens: CC BY-SA 3.0
R3, cut by 3 planes. A particular vector subspace is highlighted in blue.