Astronomisk fotografering
Den här artikeln eller det här avsnittet saknar väsentlig information och behöver kompletteras. (2023-01) Motivering: användning av teleskop Hjälp gärna Wikipedia att åtgärda problemet genom att redigera artikeln eller diskutera saken på diskussionssidan. |
Den här artikeln behöver fler eller bättre källhänvisningar för att kunna verifieras. (2023-01) Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan. |
Astronomisk fotografi eller bara astrofotografi är fotografering av astronomiska objekt, himmelska händelser eller områden i natthimlen. Det första fotografiet av ett astronomiskt objekt (Månen) togs 1840,[1] men det var inte förrän i slutet av 1800-talet som de tekniska framstegen gjorde det möjligt att göra en detaljerad fotografering av stjärnorna. Förutom att kunna fotografera detaljer i objekt som månen, solen och planeterna, kan man med modern astrofotografi avbilda objekt som är osynliga för det mänskliga ögat som mörka stjärnor, nebulosor och galaxer. Detta görs genom långtidsexponering eftersom både film och digitalkameror kan ackumulera och summera fotoner över dessa långa tidsperioder.
Fotografering med förlängda exponeringstider revolutionerade området för professionell astronomisk forskning, och registrerade hundratusentals nya stjärnor och nebulosor som är osynliga för det mänskliga ögat. Specialiserade och allt större optiska teleskop konstruerades liksom större kameror för glasplåtar. Astrofotografi spelade en tidig roll i undersökningar av himlen och klassificering av stjärnor, men med tiden har mer sofistikerad utrustning och tekniker skapats för specifika områden av vetenskaplig forskning, med bildsensorer som bara blivit en av många typer av sensorer.
Idag är astrofotografi mestadels en underdisciplin inom amatörastronomi, där man vanligen söker estetiskt tilltalande bilder snarare än vetenskapliga data. Amatörer använder ett brett utbud av specialutrustning och tekniker.
Hur fungerar det?
Med dagens digitala systemkameror är det förhållandevis enkelt att själv ta bilder av universum. Det enda som behövs är ett stadigt stativ och en kamera med möjlighet att justera slutartiden manuellt. Eftersom jorden roterar runt sin axel kommer så kallade stjärnspår att uppstå vid längre exponeringar. För att motverka jordens rotation används ett motordrivet stativ som vrider kameran i samma takt som jorden roterar. På så sätt kan långa exponeringar tas. Ju längre exponeringar desto ljussvagare objekt kan fotograferas.
En annan metod är att med så kallad "stacking" kombinera många korta exponeringar till en slutlig bild. Metoden skapar inte ljusstarkare bilder utan eliminerar istället mycket av det bildbrus som normalt skulle dränka ut stjärnor och ljussvagare fenomen. Genom bildbehandling kan på så sätt mindre stjärnor, planeter och nebulosor lyftas fram i bilden utan att brus tar över. I amatörastronomikretsar är det inte ovanligt att kombinera hundratals bilder tagna på ett och samma objekt för att uppnå ett så bra signal-brusförhållande som möjligt. Denna metod kan även framgångsrikt användas utan teleskop och kräver då i stort sett bara en kamera, ett stabilt kamerastativ och en fjärrkontroll med tidsintervall.
Reciprocitet
Reciprocitetsfel är en viktig effekt inom filmbaserad astrofotografi. Objekt som galaxer och nebulosor är ofta så ljussvaga att de inte är synliga för ögat utan hjälp. För att göra saken värre stämmer inte många objekts spektra med filmemulsionens känslighetskurvor. Många av dessa mål är små och kräver långa brännvidder. Tillsammans gör dessa parametrar dessa mål extremt svåra att fånga med film; exponeringar från 30 minuter till långt över en timme är typiska. Som ett typiskt exempel tar det cirka 30 minuter att ta en bild av Andromedagalaxen vid f/4; för att få samma densitet vid f/8 skulle det krävas en exponering på cirka 200 minuter.
När ett teleskop spårar ett föremål är varje minut svår; därför är reciprocitetsfel ett av de viktigaste motiven för astronomer att byta till digital teknik. Elektroniska sensorer har sin egen begränsning vid lång exponeringstid och låga belysningsnivåer, vanligtvis inte kallade reciprocitetsfel, nämligen brus från läckström, men denna effekt kan minskas genom att kyla sensorn.
Källor
- ^ Emerson Barnard, Edward (1895) (på engelska). Astronomical Photography. sid. 66. https://books.google.com/books?id=erh_Fx5LpasC&pg=PA66. Läst 5 oktober 2022
Media som används på denna webbplats
Författare/Upphovsman: Tkgd2007, Licens: CC BY-SA 3.0
A new incarnation of Image:Question_book-3.svg, which was uploaded by user AzaToth. This file is available on the English version of Wikipedia under the filename en:Image:Question book-new.svg
Författare/Upphovsman: Fotograf Göran Strand - http://www.fotografgoranstrand.se, Licens: CC BY 3.0
M31 - Andromedagalaxen
(c) Wikimedia Foundation, CC BY-SA 3.0
Puzzle piece with the letter W from the Wikipedia logo.
Photo of Orion Belt with the stars Alnitak, Alnilam and Mintaka. The color picture was composited from digitized black and white photographic plates recorded through red and blue astronomical filters, with a computer synthesized green channel. The plates were taken using the Samuel Oschin Telescope, a wide-field survey instrument at Palomar Observatory, between 1987 and 1991.
Författare/Upphovsman: s58y, Licens: CC BY 2.0
Subject: M45 -- Pleiades
Image FOV = 3 degrees by 2.25 degrees (180 by 135 minutes)
Image scale: 6.666 arc-second/pixel
Date: 2008/10/03, 2008/10/23
Location: near Halcottsville, NY
Exposure: 44 x 10minutes = 7h20m total exposure, ISO 400, f/4.8
Filters: IDAS LP filter
Camera: Hutech-modified Canon 30D
Telescope: SV80S 80mm f/6 + TV TRF-2008 0.8X reducer/flattener = 384mm, f/4.8
Mount: Astro-Physics AP900
Guiding: ST-402 autoguider through SV66 guidescope, MaximDL autoguiding software with 5-second and 6-second guide exposures
Processing: Raw conversion and calibration with ImagesPlus; Aligning and combining with Registar; levels, unsharp mask, color balance, cropping and JPEG conversion with Photoshop CS. No noise reduction.
Remarks: Temperature at end: 30F on 2008/10/03, 18F on 2008/10/23; SQM-L readings: 2008/10/03 -- 21.27 start, 21.33 end; 2008/10/23 -- 21.33 start, 21.40 middle, 21.24 end (crescent moonrise)