Megalocystidium-Minimum Evolution-Tree
Figure: Evolutionary relationship of Megalocystidium
The evolutionary history was inferred using the Minimum Evolution method [1]. The optimal tree with the sum of branch length = 0.36807172 is shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches [2]. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Kimura 2-parameter method [3] and are in the units of the number of base substitutions per site. The ME tree was searched using the Close-Neighbor-Interchange (CNI) algorithm [4] at a search level of 2. The Neighbor-joining algorithm [5] was used to generate the initial tree. The analysis involved 20 nucleotide sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position Evolutionary analyses were conducted in MEGA6 [2]
1. Rzhetsky A. and Nei M. (1992). A simple method for estimating and testing minimum evolution trees. Molecular Biology and Evolution 9:945-967.
2. Felsenstein J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791.
3. Kimura M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111-120.
4. Nei M. and Kumar S. (2000). Molecular Evolution and Phylogenetics. Oxford University Press, New York.
5. Saitou N. and Nei M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406-425.
6. Tamura K., Stecher G., Peterson D., Filipski A., and Kumar S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution30: 2725-2729.
- List of GenBank-Sequences
- Acanthophysellum lividocoeruleum AF506400
- Aleurobotrys botryosus AF506398
- Aleurodiscus cerussatus AF506399
- Conferticium ravum AF506382
- Gloeocystidiellum aspellum AF506432
- Gloeocystidiellum compactum AF506434
- Gloeocystidiellum formosanum AF506439
- Gloeodontia columbiensis AF506444
- Gloeodontia discolor AF506445
- Gloeodontia pyramidata AF506446
- Gloeomyces graminicola AF506448
- Megalocystidium chelidonium AF506441
- Megalocystidium leucoxanthum AF506420
- Megalocystidium luridum AF506421
- Megalocystidium luridum AF506422
- Megalocystidium wakullum AF506443
- Stereum hirsutum AF506479
- Stereum reflexulum AF506480
- Xylobolus frustulatus AF506491
- Aleurodiscus amorphus AF506397
Mer information om licensen för bilden finns här. Senaste uppdateringen: Thu, 22 Feb 2024 03:12:29 GMT